
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 2, pp. 241–269. DOI:10.46586/tches.v2023.i2.241-269

How Secure is Exponent-blinded RSA–CRT with
Sliding Window Exponentiation?

Rei Ueno1 and Naofumi Homma1

Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai-shi, Miyagi, 980-8577, Japan
rei.ueno.a8@tohoku.ac.jp, naofumi.homma.c8@rtohoku.ac.jp

Abstract. This paper presents the first security evaluation of exponent-blinded RSA–
CRT implementation with sliding window exponentiation against cache attacks. Our
main contributions are threefold. (1) We demonstrate an improved cache attack using
Flush+Reload on RSA–CRT to estimate the squaring–multiplication operational
sequence. The proposed method can estimate a correct squaring–multiplication
sequence from one Flush+Reload trace, while the existing Flush+Reload attacks
always contain errors in the sequence estimation. This is mandatory for the subsequent
steps in the proposed attack. (2) We present a new and first partial key exposure
attack on exponent-blinded RSA–CRT with a random-bit leak. The proposed attack
first estimates a random mask for blinding exponent using a modification of the
Schindler–Wiemers continued fraction attack, and then recovers the secret key using
an extension of the Heninger–Shacham branch-and-prune attack. We experimentally
show that the proposed attack on RSA–CRT using a practical window size of 5 with
16-, 32-, and 64-bit masks is carried out with complexity of 225.6, 267.7, and 2161,
respectively. (3) We then investigate the tradeoffs between mask bit length and
implementation performance. The computational cost of exponent-blinded RSA–CRT
using a sliding window with a 32- and 64-bit mask are 15% and 10% faster than that
with a 128-bit mask, respectively, as we confirmed that 32- and 64-bit masks are
sufficient to defeat the proposed attack. Our source code used in the experiment is
publicly available.
Keywords: Cache attack · Simple power analysis · Partial key exposure attack
· Exponent blinding · Sliding window exponentiation · Side-channel attack ·
RSA–CRT

1 Introduction
1.1 Background
The left-to-right sliding window is one of the fastest modular exponentiation algorithms
for implementing RSA cryptosystem. Due to its efficiency, the sliding window has been
used in many RSA–CRT implementations, including one provided in major open-source
cryptographic software libraries (e.g., Libgcrypt). The sliding window cannot be imple-
mented in a constant-time manner owing to its inherent features. However, the sliding
window was somehow believed to be secure against a simple power analysis (SPA)-like
side-channel attack [KJJ99], because the attacker cannot completely know the exponent
(i.e., the secret key of RSA–CRT) from a squaring–multiplication operational sequence of
the sliding window obtained via a side-channel. In CHES 2017 [BBG+17], it was shown
that this was not true—an SPA-like attack could fully recover the RSA–CRT secret key by
means of a Heninger–Shacham partial key exposure attack [HS09] with an application to
Libgcrypt implementation. The previous work experimentally demonstrated that, using a

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-10-15 Accepted: 2022-12-15 Published: 2023-03-06

https://doi.org/10.46586/tches.v2023.i2.241-269
mailto:rei.ueno.a8@tohoku.ac.jp
mailto:naofumi.homma.c8@rtohoku.ac.jp
http://creativecommons.org/licenses/by/4.0/

242 How Secure is Exponent-blinded RSA–CRT with Sliding Window Exponentiation?

cache side-channel realized by Flush+Reload, their attack could perform a full key recovery
of 1,024-bit and 2,048-bit RSA–CRT implemented using a left-to-right sliding window
of Libgcrypt with success rates of 100% and 13%, respectively. Due to the disclosure of
the attack, Libgcrypt has applied exponent blinding to the RSA–CRT implementation to
prevent this attack.

Currently, no side-channel attack applicable to exponent-blinded RSA–CRT implemen-
tation with sliding window is known1; thus, it is considered secure against side-channel
attacks with a preserved performance. Meanwhile, there is also no known method for
quantitatively evaluating its security, which naturally raises an important question: How
secure is the exponent-blinded RSA–CRT with a sliding window? The Libgcrypt RSA–CRT
implementation uses a 128-bit mask for the exponent blinding, while some implementations
employ (have employed) a 20-bit or 32-bit mask [FKJM+06]. However, nobody can know
whether each 20-bit, 32-bit, or 128-bit mask is insufficient or sufficient to guarantee the
security against a side-channel attack. If we can evaluate the security in a quantitative
manner, we may use a tightly short mask for the exponent blinding, which improves
the implementation performance and pushes the limits of fast RSA implementation with
resistance to side-channel attacks.

1.2 Our contributions
This paper presents the first security evaluation of the exponent-blinded RSA–CRT
implementation using a sliding window. We present a cache attack applicable to it,
and then show that a 128-bit mask is sufficiently secure to protect RSA–CRT with a
sliding window with regard to the proposed attack. Our major contributions include an
improved access-driven cache attack for RSA–CRT and a new partial key exposure attack
for exponent-blinded random-bit leak. The proposed attack can be performed with a
significantly less complexity than an attack using a straightforward guess. However, we
demonstrate that the key recovery would be still infeasible in practice, even for a 32-bit
mask, even if we use the proposed sophisticated attack, which improves and combines the
state-of-the-art methods for cache attacks and partial key exposure attacks on RSA–CRT.
Note that, although we propose a new cache attack and partial key exposure attack on
RSA–CRT, this paper aims at evaluating the security of RSA–CRT implementation with
regard to mask bit length from theoretical perspectives, and we do not state that the
current implementations have vulnerabilities. Actually, we show the possibility that a full
key recovery of RSA–CRT sliding-window implementation with a 20-bit mask would be
feasible (which is the first report on the full key recovery on such an implementation), but
our analyses reveal that the proposed attack on more than 32-bit mask would be infeasible
in the current situation.

The proposed attack consists of four steps: (i) improved Flush+Reload (an access-
driven cache attack) on RSA–CRT decryption/signing2, (ii) reversing partial bits of the
exponent from the cache trace as well as [BBG+17], (iii) modified Schindler–Wiemers
continued fraction attack to estimate the upper bits of the respective secret prime p and
q, the upper bits of the blinded exponents, and the mask bits [SW17], and (iv) extended
Heninger–Shacham partial key exposure attack with regard to exponent blinding. Although
we use an existing method for Step (ii) as it is, we present new improvements/modifications
for Steps (i), (iii), and (iv), which are essential for key-recovery attacks on exponent-blinded
RSA–CRT with sliding window exponentiation.

We analyze the complexity and (in)feasibility of the proposed attack. The attack
complexity depends on the mask bit length, denoted by b. For Step (iii), we require 225.6,

1Although Fouque et al. presented a power analysis attack on exponent-blinded RSA using sliding
window without CRT [FKJM+06], it remains unknown how to extend it to RSA–CRT.

2The proposed attack can be also mounted using power analysis (e.g., SPA), if the attacker can
completely distinguish squaring and multiplication from one trace without any error.

Rei Ueno and Naofumi Homma 243

267.7, and 2161 times continued fraction expansions for b = 16, 32, and 64 to break the
1,024-bit RSA–CRT implementation, whereas a straightforward attack using a naïve guess
of unrecovered bits after Step (ii) requires more-than 2500 complexity [OHK19] (as the
existing Heninger–Shacham attack is inapplicable). Our evaluation results indicate that
a 64-bit mask would be sufficient to protect the 1,024-bit RSA–CRT decryption/signing
with a sliding window against the proposed attack, as the complexity of 2161 would be
excessive to break 1,024-bit RSA. This leads to the conclusion that even a 32-bit mask
may be sufficient for the protection against the proposed attack, because it was mentioned
in [SW17] that the practically feasible number of the continued fraction expansions would
be at most 260.

Reducing the mask bit length contributes to the improvement of implementation
performance. We analyze the performance of exponent-blinded RSA–CRT using the sliding
window with different mask bit length to counter the proposed attack. We demonstrate
that exponent-blinded RSA–CRT decryption/signing with 64-bit and 32-bit masks requires
approximately 15% and 10% fewer modular multiplications than that with a 128-bit mask,
respectively. In addition, we experimentally confirmed the reduction of computational time;
the 1,024-bit RSA–CRT decryption with 128-bit, 64-bit, and 32-bit masks was completed
within 1.05ms, 0.964ms, and 0.869ms on average in our environment, respectively. Though
the designer should determine the mask bit length by considering all possible attacks
depending on the application scenario, the obtained result would be one major factor to
determine the proper mask bit length with regard to the cache/SPA-like attacks which
combines the state-of-the-art.

Our source code used in the experiment is publicly available at https://github.com/
ECSIS-lab/TCHES_UH23.
Remark 1. In this study, we focused on SPA-like attacks that utilize the S–M sequence in
the exponentiation and/or partial bits of exponent, because this type of attack works with a
cache attack. If we can obtain more side-channel information than the S–M sequence, we can
adopt more sophisticated power analysis attacks. For example, there are some attacks that
exploit the collision of multiplication operand(s) [Wal08,HMA+08,CFG+10,HKT12,SSS15]
and/or utilize statistical tools for power traces such as correlation, clustering, and machine
learning [BJ13,PITM14,PCBP21]. The proposed attack is likely to be further improved
through combination with the above attacks, if detailed power traces are available for the
attacker. For example, if the attacker can detect collisions of multiplication operands in
a horizontal power trace, the attacker might know more bits of the exponent than the
reversing algorithm used in Step (ii).

2 Preliminaries and Related Works
2.1 RSA–CRT
Let p and q be a pair of random primes used for the RSA cryptosystem. Let (e,N) be the
public key, where e is usually given by 216 + 1 and N = pq. Let (d, p, q) be the secret key,
where ed ≡ 1 mod φ(N) (φ is Euler’s totient function and φ(N) = (p − 1)(q − 1) here).
The (textbook) RSA encryption and decryption are expressed as

c ≡ me mod N,
m ≡ cd mod N,

respectively, where m is the plaintext and c is the corresponding ciphertext. By contrast,
the RSA signing for message m is expressed as

σ ≡
(
H(m)

)d mod N,

https://github.com/ECSIS-lab/TCHES_UH23
https://github.com/ECSIS-lab/TCHES_UH23

244 How Secure is Exponent-blinded RSA–CRT with Sliding Window Exponentiation?

Table 1: Modular exponentiation algorithms used in RSA software

Library Version (as of 2021) Algorithm
Botan 2.15.0 Fixed window
Bouncy Castle 1.8.9 Sliding window
cryptlib 3.4.5 Fixed window
Crypto++ 8.3 Fixed window
GnuTLS 3.6.15 Sliding window
Libgcrypt 1.8.7 Sliding window
mbedTLS 2.22.0 Sliding window
Nettle 3.6.0 Fixed window
OpenSSL 1.1.1h Fixed window
WolfCrypt 4.5.0 Fixed window

whereH is a cryptographic hash function with padding and σ is the corresponding signature.
The signature is verified by examining whether

H(m) ≡ σe mod N.

As a key-recovery side-channel attacker usually aims to recover the exponent d at the
modular exponentiation for both cases of decryption and signing, we focus on the modular
exponentiation of cd mod N throughout this paper; nonetheless, our analysis can be also
applied to signing.

Modular exponentiation with the secret key in the RSA cryptosystem is usually
performed based on Chinese Reminder Theorem (CRT) for reduced computational cost.
In RSA–CRT decryption, we first compute

mp ≡ cdp mod p,

mq ≡ cdq mod q,

where dp ≡ d mod φ(p) and dq ≡ d mod φ(q) (φ(p) = p − 1 and φ(q) = q − 1). We then
reconstruct m using CRT. The operand and exponents in RSA–CRT are half-length of
those in RSA without CRT, which yields 2–4 times faster computation.

2.2 Sliding window exponentiation
The sliding window is one of the fastest modular exponentiation algorithms using precom-
putation. Due to its efficiency, the sliding window method has been widely and practically
employed in many RSA–CRT implementations, including one provided in Libgcrypt, which
is used for the experiment in this study. Libgcrypt has been widely deployed in many
real-world applications as a part of GnuPG and OpenPGP. Table 1 summarizes the
exponentiation algorithms used in the RSA implementation in major open-source crypto-
graphic libraries. Sliding and fixed window exponentiations are deployed due to its high
performance and some levels of side-channel resistance. Moreover, some cryptographic
libraries provide an option of blinding exponent and/or message to prevent side-channel
attacks.

Algorithm 1 is the left-to-right sliding window for base c, modulus N , and exponent d
with a bit length l. At Lines 3–6, we first precompute up-to the (2w − 1)-th odd powers
of the base (i.e., c1, c3, . . . , c2w−1), where w is the maximum window size. Lines 8–19
constitute the main loop of the sliding window exponentiation. A loop consists of a
sequence of squarings followed by a multiplication, where the number of squarings is
dependent on the exponent (i.e., secret key). At Line 9, we first count the leading zeros
of the remaining exponent bits as z to determine the location of the temporal window at
Line 10. Then, at Line 12, we count the trailing zeros in the maximum window size (or
all remaining exponent bits when w > i, as in Line 11) as t to determine the temporal

Rei Ueno and Naofumi Homma 245

Algorithm 1 Left-to-right sliding window exponentiation
Input: Base c, modulus N , and exponent d = (dldl−1 . . . d1)2
Output: Modular exponentiation result m ≡ cd mod N
1: parameter w; . Predetermined maximum window size
2: Function SlidingWindoww(c,N, d)
3: int c1 ← c; int c2 ← c2 mod N ;
4: for j from 1 to 2w−1 − 1 do . Precomputation
5: int c2j+1 ← c2c2j−1 mod N ;
6: end for
7: int m← 1; int i← l;
8: while i > 0 do . Main loop
9: int z ← LeadingZerosOf((didi−1 . . . e1)2); . Count leading zeros
10: int i← i− z; . Set i such that di = 1
11: int k ← min(w, i);
12: int t← TrailingZerosOf((didi−1 . . . di−w+1)2); . Count trailing zeros
13: int u← (didi−1 . . . di−k+1)2 � t; . Remove trailing zeros
14: for f from 1 to z + (k − t) do
15: m← m2 mod N ; . Squaring
16: end for
17: m← mcu mod N ; . Multiplication
18: i← i− (k − t);
19: end while
20: return m;
21: end Function

window size as w − t (or i− t). At Line 13, we determine the multiplicand according to
the value of the temporal window u. At Lines 14–16, we perform z + (k − t) squarings,
followed by a multiplication with a precomputed value cu at Line 17.

As in the previous studies (e.g., [BBG+17, UTHH21]), the operation sequence of
squarings and multiplications in sliding window exponentiation is represented using two
symbols S and M, which denote squaring and multiplication, respectively. For example, a
string of SSM denotes an operation sequence of two squarings followed by one multiplication.
If the exponent d is given by a 20-bit value (1101 1010 1000 0110 0111)2 as an example,
Algorithm 1 with a maximum window size w = 4 computes cd mod N using a left-to-right
operation sequence of SSSSMSSSMSSMSSSSSSMSSSSM, where the multiplicands of the
first, second, third, fourth, and fifth multiplication are c13, c5, c1, c3, and c7, respectively.

Although sliding window exponentiation requires precomputation, this method with
an optimal maximum window size w (in terms of computational time) can achieve one of
the fastest modular exponentiations, as analyzed in [Koc95]. Here, the optimal maximum
window size w depends on the bit length of the exponent, because a larger w yields fewer
multiplications in the main loop at the cost of precomputation. In this study, we always
consider w = 5 unless otherwise stated, as the Libgcrypt RSA–CRT implementation with
exponent blinding, which is the target of this study, uses w = 5.3

2.3 Access-driven cache attack on exponentiation
The side-channel attacker on exponentiation typically estimates the operation sequence
to recover the secret exponent from the side-channel information. We describe the S–M
sequence estimation using Flush+Reload, which is an access-driven cache attack used in
many previous works (e.g., [YF14,BBG+17]). In attacks on exponentiation, Flush+Reload
is frequently used to exploit the instruction-flow dependency on the secret exponent. When
using Flush+Reload, it is assumed that the attacker can run a process on a CPU core
while the victim’s process is running on another core with the last level cache (LLC)

3In fact, it is optimal for the bit lengths of the exponent for the exponent-blinded 1,024-bit RSA–CRT.
For a larger bit RSA–CRT, a larger window size is optimal in terms of computational time (e.g., w = 6 for
2,048-bit and 4,096-bit RSA–CRT); however, Libgcrypt implementation uses w = 5 even for RSA–CRT
larger than 1,024-bit.

246 How Secure is Exponent-blinded RSA–CRT with Sliding Window Exponentiation?

shared. Such an assumption holds frequently true in practice, such as for cloud services
that provide server(s) and virtual machines (VMs) for various users/clients, where the
attacker can perform a cross-VM cross-core attack.

The basic idea of Flush+Reload is to exploit the timing difference in loading data from
LLC or main memory. Loading data from LLC is much faster than from main memory.
To distinguish them, the attacker repeats the following three procedures:

1. Flush: the attacker flushes the shared cache (the cache flush can be performed using,
for example, the CLFLUSH operation in x86 CPUs).

2. Wait: the attacker waits for the victim’s process to perform the operation depending
on secret value (i.e., squaring or multiplication in the case of RSA–CRT).

3. Reload: the attacker reloads the code segments related to the victim’s secret.

If the victim performs a squaring or multiplication during the time slot of Wait, the code
segments for squaring or multiplication would be loaded faster at Reload because they come
from LLC. Otherwise, Reload would be slower because they come from the main memory.
Thus, the attacker can estimate whether the victim performs a squaring or multiplication
during a time slot and can obtain the S–M sequence by repeating Flush+Reload. Note that
the Libgcrypt implementation uses an identical code for both squaring and multiplication
to mitigate cache attacks [YF14], but estimation of the S–M sequence is still possible by
probing other secret-dependent instructions (e.g., the entry of the main loop) in addition
to the multiplication, as in [BBG+17].
Remark 2. There is another major type of access-driven cache attack named Prime+Probe,
which has been used to break the public key cryptographic implementations including ones
using sliding window [LYG+15, IGI+15, IGI+16]. However, the accuracy of Prime+Probe
would be usually lower than that of Flush+Reload, as a Flush+Reload attacker only has
to access the target address, which yields higher speed and lower noise measurements. In
fact, the conventional Prime+Probe (and even Flush+Reload) attacks on modular expo-
nentiations require multiple measurements of the cache trace to tolerate the measurement
noise. Thus, we focus on Flush+Reload, as an attack on exponent-blinded exponentiation
requires a very accurate estimation of S–M sequence with no error from only one cache
trace. More precisely, techniques to tolerate noise using multiple measurements of cache
traces, such as clustering, averaging, and majority voting, are unavailable for attacking
exponent-blinded implementations because the S–M sequence changes in every cache trace
measurement due to the random mask.

2.4 Cache attack on RSA–CRT using sliding window
The cache attack by Bernstein et al. in CHES 2017 [BBG+17] consists of three steps:
(i) estimation of the S–M sequence from the cache trace acquired via Flush+Reload, (ii)
reversing the partial bits of the exponent from the S–M sequence according to the window
determination rule of the sliding window, and (iii) recovery of full bits of the exponent from
the above partial bits using the Heninger–Shacham partial key exposure attack. Bernstein
et al. showed in [BBG+17] showed that this attack can reduce the number of key candidates
to at most 106 for the 1,024-bit RSA–CRT with a 100% success rate, and to 2× 106 for
2,048-bit RSA–CRT with a 13% success rate.

The reversing algorithm in Step (ii) is one of the their major proposals in [BBG+17],
and it is analyzed and improved by van Vredendaal and Breitner [vV18,Bre17]. In this
study, we employ van Vredendaal’s and Breitner’s reversing algorithm due to its optimality4.

4Although the algorithm was shown to be optimal/complete in the number of recovered bits, Oonishi
and Kunihiro further improved the reversing algorithm by reducing the number of candidate values
which uncertain bits can take [OHK19]. However, for the ease of calculation and evaluation, we use van

Rei Ueno and Naofumi Homma 247

The inputs of the algorithm are an S–M sequence and maximum window size w, and the
output is partial bits of the corresponding exponent. Let d′ ∈ {0, 1, x, x}l be the estimated
bit string of exponent, where x and x denote an uncertain bit and l is the bit length of
the exponent. Here, the underlined symbol (i.e., x) denotes the bit positions where a
multiplication is performed. Given an S–M sequence, the algorithm first determines an
initial estimation d̂, which is a string composed of only x and x (i.e., {x, x}l) derived by
the conversion rule of S→ x and SM→ x (for example, d̂ = xxxxx for an S–M sequence
of SSMSSSM). Then, according to the reverse of the temporal window determination rule
of the sliding window, the algorithm derives an estimation of d (i.e., d′). Let d̂i and d′i
be the i-th bit of d̂ and d′, respectively. Let V be an integer set defined by { v | d̂v = x }.
Here, d′i is determined as

d′i =


1 if i ∈ V (i.e., d̂i = x),
1 else if there exists v ∈ V such that v + w−v − 1 = i = v + w+

v − 1,
x else if there exists v ∈ V such that v + w−v − 1 ≤ i ≤ v + w+

v − 1,
0 else,

where w−v and w+
v denote the possible minimum and maximum sizes of the temporal window

that include the bit position v with d̂v = x, respectively. Because the temporal windows
should not overlap a bit position, such hypothetical minimum and maximum sizes can be
determined uniquely for a given S–M sequence. More precisely, w−v (resp. w+

v) can be deter-
mined by dividing d̂ such that the size of temporal windows becomes as small (resp. large)
as possible in a right-to-left (resp. left-to-right) manner. For example, an S–M sequence
of SSSSMSSSMSSMSSSSSSMSSSSM is converted to d̂ = xxxxxxxxxxxxxxxxxxxx, and
then is reversed to d′ = 1xx1 1x10 1000 xx10 xxx1.

As in the example, the reversing algorithm cannot fully recover the exponent bits,
and the algorithm output d′ contains some uncertain bits (i.e., x). This is because of
the fact that the attacker cannot know which multiplicand is used in the multiplication
from the cache trace. The expected number of recovered bits depends on the maximum
window size w. For w = 5 (as targeted in this study), it was shown in [OHK19] that the
algorithm can recover about 41.9% bits of exponent on average from a given S–M sequence.
The remaining uncertain bits are recovered by means of the partial key exposure attack
introduced in Section 2.6.

In Step (ii), it is assumed that the attacker can obtain a complete and correct S–M
sequence in Step (i), although the S–M sequence estimated using Flush+Reload would
contain inevitable noise. In fact, the experimental evaluation in [BBG+17] showed that
it was impossible to obtain a completely correct S–M sequence, and the estimated S–
M trace contains 14 errors on average, despite the use of the performance degradation
attack [ABF+16] to enhance the accuracy. Note that it would be relatively difficult to
correct even one error in the estimated S–M sequence [OK20,UTHH21], and errors in
the S–M sequence would make the reversed bits of the exponent non-trivially incorrect.
Bernstein et al. noted that it would be possible to obtain a correct S–M sequence from
multiple measurements of cache traces with alignment and a simple majority rule, and
Ueno et al. showed an explicit method to reconstruct the correct S–M sequence from
approximately 100 measurements based on Levenshtein distance and dynamic time warping
(DTW) [UTHH21]. However, these error-correction methods using multiple measurements
are unavailable for attacking exponent-blinded implementation due to the random mask;
we must obtain a correct S–M sequence from one measurement.

Vredandaal’s and Breitner’s algorithm in this study, as the difference between van Vredendaal/Breitner
and Oonishi–Kunihiro has little impact on the proposed attack as discussed in Section 4.4.

248 How Secure is Exponent-blinded RSA–CRT with Sliding Window Exponentiation?

2.5 Exponent blinding
Exponent blinding is one of the major countermeasures against side-channel attacks. The
basic idea behind exponent blinding is to add a random value to the secret exponent such
that the exponentiation result is preserved. More precisely, exponent-blinded RSA–CRT
decryption is expressed by

mp ≡ cdp+rpφ(p) mod p,
mq ≡ cdq+rqφ(q) mod q,

where rp and rq are random integers. We can easily confirm cdp+rφ(p) ≡ cdq mod p and
cdq+rφ(q) ≡ cdq mod q according to Euler’s theorem. Even if the attacker obtains partial
information of a blinded exponent via a side-channel, he/she cannot know the secret keys
dp and dq because the exponents are masked using a random value.

Exponent-blinded RSA–CRT is known to be insecure if the attacker can obtain complete
blinded exponents, because the blinded exponent allows for a correct decryption. In
addition, an attacker who knows three blinded exponents can remove the mask and recover
the secret key dp and dq in polynomial time. Let Dp,1, Dp,2, and Dp,3 be three blinded
exponents with different masks rp,1, rp,2, and rp,3, respectively (i.e., Dp,1 = dp + rp,1φ(p),
Dp,2 = dp + rp,2φ(p), and Dp,3 = dp + rp,3φ(p)). If |rp,1 − rp,2| and |rp,1 − rp,3| are co-
prime, an attacker who completely knows Dp,1, Dp,2, and Dp,3 can recover the secret key
φ(p) using the Euclidean algorithm as

φ(p) = gcd(|Dp,1 −Dp,2| , |Dp,1 −Dp,3|), (1)

where gcd(x, y) denotes the greatest common divisor of x and y. This is also true for q.
Fortunately, the S–M sequence of the sliding window available for cache attackers yields an
exposure of only approximately 41.9% exponent bits when w = 5; hence, exponent-blinded
RSA–CRT with a sliding window is believed to be secure.

The bit length of the mask has a large impact on the performance. For the 1,024-bit
RSA–CRT, dp and φ(p) are given by 512 bits. Therefore, if the mask bit length is b,
the bit length of the blinded exponent is 512 + b, which degrades the implementation
performance. For example, if b = 128 as in the Libgcrypt implementation, the exponent
blinding incurs an approximately 25% penalty in the execution time (excluding the cost for
random number generation). The mask bit length should be set as short as possible while
maintaining sufficient security against cache attacks. However, no method for evaluating
the security of exponent-blinded RSA–CRT with a sliding window is known.

2.6 Partial key exposure attack
Algorithms to recover the full secret key of RSA(–CRT) from its partial information have
been developed over the last approximately two decades. They have been used for the full
key recovery after estimating partial bits using the side-channel attack like cache attacks,
SPA, and cold-boot attacks [HSH+09].

There are three types of models for partial key bit leaks, which are referred to as random
bits (e.g., Heninger–Shacham-type attack [HS09]), continuous bits (e.g., Coppersmith-type
attack [Cop97]), and bit flips (e.g., Henecka et al.’s attack [HMM10]). Table 2 lists the
major existing key exposure attacks for RSA(–CRT). The random-bit leak model, which is
the main focus of this paper, indicates that the attacker can know bits of random positions,
and the remaining bits are considered as uncertain (or erasure) bits to be recovered. The
partial key exposure attack for the random-bit leak was initially presented by Heninger
and Shacham [HS09]. It is known that the Heninger–Shacham algorithm completes the
full-key recovery in polynomial time if more than 50% bits are exposed [HS09,PPS12].
The random-bit leak model fits the scenario of a cache attack (or SPA) on RSA–CRT with

Rei Ueno and Naofumi Homma 249

Table 2: Major partial key exposure attacks on RSA(–CRT)

Leak model Random bits Continuous bits Bit flips
No Heninger–Shacham [HS09] Coppersmith [Cop97] Henecka et al. [HMM10]
exponent Paterson et al. [PPS12] Boneh et al. [BDF98] Paterson et al. [PPS12]
blinding Kunihiro et al. [KSI13]∗ Blömer–May [BM03] Kunihiro et al. [KSI13]∗

Oonishi–Kunihiro [OK20]∗∗ Coron [Cor04,Cor07] Kunihiro [Kun15]
Herrmann–May [HM08] Oonishi–Kunihiro [OK19]†
Sarkar–Maitra [SM09]
Ernst et al. [EJMdW05]
Aono [Aon09]
Takayasu–Kunihiro [TK14]

Exponent Fouque et al. [FKJM+06]‡ Cimato et al. [CMS15] Schindler–Itoh [SI11]
blinding This study Zhou et al. [ZvdPYS22] Bauer [Bau12]†

Schindler–Wiemers [SW14,SW17]

∗ For hybrid model of random bits leak with bit flips.
∗∗ For S–M sequence of sliding window with some flips (i.e., errors) in S and M.
† For S–M sequence with some flips (i.e., errors) in S and M, but not (necessarily) for sliding window.
‡ On RSA without CRT.

a sliding window, as Bernstein et al. adopted the Heninger–Shacham algorithm in their
attack [BBG+17]. In the Heninger–Shacham attack, all exposed bits are supposed to be
correct. Kunihiro et al. proposed an extended attack that can tolerate some errors (i.e., bit
flips), which are likely included in the exposed bits obtained via SPA [KSI13]. Moreover,
Oonishi and Kunihiro presented a partial key exposure attack on non-exponent-blinded
RSA–CRT with sliding window [OK20] which can tolerate some flips of S and M in the
estimated S–M sequence. However, its tolerable error rate is severe for w = 4 (0.8%), and
is not evaluated for w = 5.

There are a few partial key exposure attacks on exponent-blinded RSA(–CRT). Fouque
et al. presented a power analysis attack on exponent-blinded RSA using a sliding window
without CRT [FKJM+06]. Their attack exploits an approximation of d ≈

⌊ 1+kN
e

⌋
to

estimate the random mask and secret key, and it is unknown how to extend it to RSA–
CRT (such an approximation using e, k, and N is unavailable for dp and dq). Bauer’s
attack [Bau12], which followed Fouque et al.’s attack, can tolerate errors probably included
in partial key bits (more precisely, S–M sequence estimated via power traces); still, it
cannot be applied to RSA–CRT. In addition, although Bauer mentioned that his attack can
be extended to fixed and sliding window exponentiations, no concrete extension method
is known and its success rate and feasibility are unclear. Cimato et al. extended the
Coppersmith-type attack to the exponent blinding [CMS15], and Schindler and Wiemers
presented a continued fraction attack for the exponent blinded RSA–CRT that can tolerate
some errors in the bit-flip leak. Recently, Zhou et al. presented yet another Coppersmith-
type attack on exponent-blinded RSA–CRT, which is sufficiently feasible and is adoptable
of SCAs [ZvdPYS22]. Thus, no existing partial key exposure attack is adoptable for a cache
attack or SPA on exponent-blinded RSA–CRT with the sliding window exponentiation.

Hereafter, we introduce the Heninger–Shacham branch-and-prune attack [HS09] and
then introduce the Schindler–Wiemers continued fraction attack [SW17], which are two
bases of the proposed attack.

Heninger–Shacham branch-and-prune attack. The Heninger–Shacham attack exploits
the following relation between public and secret keys of RSA–CRT:

pq = N,

edp = kp(p− 1) + 1, (2)
edq = kq(q − 1) + 1, (3)

250 How Secure is Exponent-blinded RSA–CRT with Sliding Window Exponentiation?

where kp and kq are an integer5. The integers kp and kq are unknown for the attacker
in general. However, as in previous studies, we consider kp and kq to be known, because
(kp, kq) takes only at most 216 patterns for the standard encryption key (i.e., e = 216 + 1),
which is sufficiently small for the attacker to perform an exhaustive search.

Let x[i] denote the i-th bit of x in the binary integer representation. Let τ(x) be the
number of trailing zeros of x (i.e., arg maxs∈Z gcd(2s, x)). Let Slice[i] be a tuple of secret
key candidates at a bit position related to i as

Slice[i] = (p[i], q[i], dp[i+ τ(kp)], dq[i+ τ(kq)]),

and Slice[1] = (1, 1, dp[1 + τ(kp)], dq[1 + τ(kq)]) can be determined only from public
information, including (kp, kq). The Heninger–Shacham attack reconstructs the secret
key in an iterative manner from Slice[1] to Slice[l] (i.e., derives candidates for Slice[i]
from Slice[i− 1] in an ascending manner). Although one slice Slice[i] contains four binary
variables, it takes only two pattern for each slice regarding the RSA–CRT constraint
relation. According to Hensel’s lifting lemma, the above equations are translated to the
following constraint relations:

p[i] + q[i] ≡
(
N − p(i)q(i)

)
[i] mod 2,

dp[i+ τ(kp)] + p[i] ≡
(
kp(p(i) − 1) + 1− ed(i+τ(kp))

p

)
[i+ τ(kp)] mod 2,

dq[i+ τ(kq)] + q[i] ≡
(
kq(q(i) − 1) + 1− ed(i+τ(kq))

q

)
[i+ τ(kq)] mod 2,

for any i, where p(i) denotes up-to the (i− 1)-th bit value of p, (i.e., p(i) =
∑i−1
a=0 2ap[a]),

and this is the same for other variables q(i), d(i+τ(kp))
p , and d(i+τ(kq))

q . Because the attacker
already have candidates for up-to the (i− 1)-th slices when estimating the i-th slice, the
right-hand side of these equations are known to the attacker. Therefore, for one sequence of
Slice[1],Slice[2], . . . ,Slice[i− 1], the simultaneous equations have two solutions for Slice[i].
Then, if the solution does not match the exposed bits, the slice candidate is discarded as
it should be an incorrect estimation. Thus, the attacker constructs a branch-and-prune
tree of slice nodes corresponding to the key candidates in accordance with the constraint
relations, and prunes slice nodes with incorrect key candidates inconsistent with exposed
bits. The time and memory complexities heavily depend on the ratio of exposed bits. It is
known that the Heninger–Shacham algorithm runs in polynomial time if the exposed bits
ratio is greater than 0.5.

Schindler–Wiemers continued fraction attack. Schindler and Wiemers presented a
continued fraction attack on exponent-blinded RSA–CRT with a bit-flip leak. The continued
fraction attack is based on Equation (1) and exploits the following three properties of
blinded exponent in RSA–CRT to tolerate the bit flips: (a) earlier computation steps of
the gcd depend on only the upper bits of |Dp,1 −Dp,2| and |Dp,1 −Dp,3|, (b) λ1(Dp,1 −
Dp,2) + λ2(Dp,1 − Dp,3) = 0 holds, where λ1 = ±(rp,1 − rp,3) and λ2 = ±(rp,1 − rp,2),
according to extended Euclidean algorithm, and (c) φ(p) =

∣∣∣Dp,1−Dp,3λ1

∣∣∣ =
∣∣∣Dp,1−Dp,2λ2

∣∣∣ holds.
These properties allow the attacker to feasibly approximate the upper bits of p from the
estimated blinded exponents with bit flips, which can be also applied to the case of q.

The upper bits of p can be approximated using a continued fraction. Let x and y be

5Originally, another equation ed = k(N − p− q + 1) + 1 (where k is an integer related to kp and kq) is
included in the equations; but, in this study, we omit it and its corresponding constraint relation, because
we can perform the branch-and-prune without them.

Rei Ueno and Naofumi Homma 251

integers. The continued fraction of a rational number x/y is expressed by

x

y
= x0 +

1

x1 +
1

x2 +
1

. . . xρ−1 +
1
xρ

,

where the expansion is completed with ρ times. Here, x0, x1, . . . , xρ (and the corresponding
y0, y1, . . . , yρ−1) are integers determined in accordance with extended Euclidean algorithm
such that

x = x0y + y0,

y = x1y0 + y1,

y0 = x2y1 + y2,

...
yρ−3 = xρ−1yρ−2 + yρ−1,

yρ−2 = xρyρ−1.

Here, x/y can be approximated as x′/y′ by terminating the continued fraction expansion
at the θ-th step (θ < ρ). Schindler and Wiemers showed that φ(p) (and p) can be
feasibly approximated using the continued fraction expansion with x = |Dp,1 −Dp,2| and
y = |Dp,1 −Dp,3|. It is sufficient to terminate the continued fraction expansion when
xθ ≤ 2b or yθ ≤ 2b, where b is the mask bit length, as it holds |rp,1 − rp,2| < 2b and
|rp,1 − rp,3| < 2b. Thus, the result of the continued fraction expansion is given by a pair
of b-bit integers (x′, y′) such that x′

y′ ≈
∣∣∣Dp,1−Dp,3Dp,1−Dp,2

∣∣∣ (according to Property (b)). Then,
Property (c) is used to estimate p (or q) from the results of the continued fraction as⌊∣∣∣∣ D̃′

p,µ1−D̃
′
p,µ3

x′

∣∣∣∣⌋ or
⌊∣∣∣∣ D̃′

p,µ1−D̃
′
p,µ2

y′

∣∣∣∣⌋ (we use x′ or y′, whichever is greater). In addition,

owing to Property (a), the continued fraction (according to extended Euclidean algorithm)
can be calculated with some θ if the lower bits of the exponent contain some errors.
Therefore, the continued fraction attack successfully works using an exhaustive guesses
of bit flips in the upper b bits of exponent (not full bits), even if the estimated blinded
exponent contains some noise. Yet, its extension to random-bit leak of this attack has not
been discovered.

3 Proposed Attack
3.1 Overview
The proposed attack consists of four steps: (i) S–M sequence estimation via a side-
channel, (ii) reversing partial bits of the exponent using van Vredendaal’s and Breitner’s
algorithm [vV18,Bre17], (iii) estimation of the random mask using a modified Schindler–
Wiemers continued fraction attack, and (iv) full-key recovery using an extended Heninger–
Shacham partial key exposure attack.

3.2 Step (i): Estimation of S–M sequence using Flush+Reload
In this study, we employ a cache attack, namely Flush+Reload, to estimate the S–M
sequence, although we can also employ SPA. In attacking exponent-blinded RSA–CRT, we

252 How Secure is Exponent-blinded RSA–CRT with Sliding Window Exponentiation?

must estimate a correct S–M sequence from one measurement of the cache trace, because
error-correction techniques using multiple measurements for an exponent (e.g., majority
vote or [UTHH21]) are unavailable due to the random mask. Since existing Flush+Reload
attacks on RSA–CRT always incur error in the S–M sequences estimated from one trace,
it is mandatory for an attack on exponent-blinded RSA–CRT to improve the accuracy of
the Flush+Reload trace measurement.

Flush+Reload trace measurement. To acquire the S–M sequence during sliding window
exponentiation, we set Flush+Reload probes at four positions: (A) integer multiplication6

in Lines 15 and 17 of Algorithm 1, (B) modular reduction in Lines 15 and 17, (C)
determination of temporal window position corresponding to Lines 9 and 10, and (D)
determination of the temporal window size corresponding to k − t at Line 14. The
Libgcrypt implementation performs modular multiplication using a multi-precision integer
multiplication followed by a modular reduction. To detect the timing of multiplication and
squaring, we set probes on code segments for (A) integer multiplication and (B) modular
reduction. We guess that the victim performs either squaring or multiplication during the
time slot if we find either of following two patterns: (1) Probe (A) detects the victim’s
loading and Probe (B) also detects it less-than two slots after the detection of Probe (A)
or (2) either Probe (A) or (B) detect it and another modular squaring/multiplication is
not detected within the nearest two slots. Note that, if Probes (A) and/or (B) detect the
loading two times within four successive time slots, we consider it as one detection, as
either is likely to detect it due to speculative execution.

The attacker cannot distinguish squaring and multiplication from Probes (A) and (B),
as the Libgcrypt implementation employs identical code segments for both squaring and
multiplication to mitigate cache attacks [YF14]. Therefore, we should know the timing of
the entry of each loop in the sliding window in distinguish squaring and multiplication.
For this purpose, we set two probes (C) and (D) on code segments to determine the
temporal window, which is executed at the entry of each loop of the sliding window, only
after modular multiplication (not squaring). We guess that a new loop has started if we
find either of the following two patterns: (1) Probe (C) detects the victim’s loading and
Probe (D) also detects the same less-than two slots after the detection of Probe (C) or (2)
Probe (D) detects the victim’s loading but Probe (C) does not, and another loop entry is
not detected within the nearest two slots. This is similar to the case of Probes (A) and (B),
except when only Probe (C) detects the loading but Probe (D) does not. This is because we
experimentally found that this is the best in accordance with our error-correction strategy
described below, where we use an S–M sequence estimation method that employs the
information from Probes (C) and (D). Thus, we use two probes for detecting each procedure
(four in total) to reliably estimate the S–M sequence with reduced error probability. Such
probe doubling is especially effective to prevent a misdetection, as most capture errors in
Flush+Reload trace are from misdetection [UTHH21].

To evaluate and validate the S–M sequence estimation, we performed an experimental
cross-core Flush+Reload attack on Libgcrypt RSA–CRT running on an Intel i5-3470 CPU
with 6GB memory. The operating system was CentOS7, and the target software was from
Libgcrypt 1.7.8 [Lib17]7. We used an open-source toolkit for microarchitectural attack
provided by Yarom, namely Mastik [Yar18], and we employed the performance degradation

6We use the terms “integer multiplication” and “modular reduction” for the code segments used for
modular multiplication and modular squaring in the sliding window. Modular multiplication and modular
squaring are performed using the same codes in Libgcrypt.

7This is old version for 2022. Let us use this version for a validity evaluation of the countermeasure
which was implemented after the publication of Bernstein et al.’s attack targeting Libgcrypt 1.7.6, and
this also allows us to compare our attack to Bernstein et al.’s attack in a relatively fair manner. However,
this version of RSA–CRT software is almost same to the up-to-date version. Note that the purpose of
this paper is not to state the existence of vulnerabilities in current implementations, but to evaluate the
security of sliding-window exponentiation in RSA–CRT.

Rei Ueno and Naofumi Homma 253

Table 3: Parameters for Flush+Reload attack using Mastik

Observed operations and Flush+Reload probe position
Probed operation Probe position
(A) Multi-precision integer multiplication _gcry_mpih_mul+21
(B) Multi-precision modular reduction _gcry_mpih_mod+23
(C) Temporal window position determination _gcry_mpi_powm+1743
(D) Temporal window size determination _gcry_mpi_powm+1868

Positions of performance degradation
Compromised operation Applied position
Multi-precision modular reduction _gcry_mpih_submul_1+24

_gcry_mpih_submul_1+47
_gcry_mpih_submul_1+60

Multiplicand selection _gcry_mpi_set_cond+32
_gcry_mpi_set_cond+46
_gcry_mpi_set_cond+60

Parameter settings for FR-trace∗

Parameter Value
slot 10,000
maxsample 100,000
threshold 100
idle 500
pdacount 2

∗ Program for Flush+Reload in Mastik.

175 177 179 181 183 185 187 189 191 193 195 197 199 201 203 205
0

50

100

150

200

Slot number

Ti
m

e
fo

r r
el

oa
d

[c
lo

ck
 c

yc
le

s]

250

300

Figure 1: Example Flush+Reload trace.

attack for improved accuracy, as done in the many related studies [ABF+16]. Table 3
summarizes the parameters for the Flush+Reload attack.

Figure 1 shows a part of an example trace obtained via the proposed Flush+Reload
attack, where the horizontal axis denotes the Flush+Reload time slot number, and the
vertical axis denotes the loading time at Reload for each probe ((A)–(D)). As the loading
from the main memory and LLC requires 250 and 100 cycles on average, respectively,
we guessed that the victim accessed the probed code segment if Reload took less-than
195 cycles. At the 188th, 187th, 194th, 195th, and 202nd slots, Probes (A) and/or (B)
detected the victim’s loading of modular multiplication/squaring. Here, as the 194th
slot detection may be an error due to the speculative execution, we ignore the 194th
slot detection, as mentioned above. Moreover, at the 189th slot, Probes (C) and (D)
detected the victim’s temporal window determination (i.e., the entry of a loop), which is
performed only after modular multiplication (not squaring). Thus, we could estimate the
S–M sequence performed by the victim as SSMS from this Flush+Reload trace.

Error-correction strategy by exploiting characteristics of sliding-window S–M sequence.
We further introduce some heuristics for translating the cache traces to reliable S–M

254 How Secure is Exponent-blinded RSA–CRT with Sliding Window Exponentiation?

sequence (i.e., correcting errors in an estimated S–M sequence), according to the features of
the sliding window exponentiation. Roughly speaking, our translation strategy is detecting
modular multiplication and squaring such that the squaring is likely to be detected over
multiplication (this is represented by the asymmetry between the detections of Probes (A)
and (B) and Probes (C) and (D) as mentioned above), correcting inconsistency with the
rule of temporal window determination, and replacing S to M in the order of likelihood
such that the number of S is equivalent to the expected number. This is due to the fact
that the number of squarings is actually greater than that of multiplications.

First, we must detect the timing of the entry of the first loop after the precomputation.
The number of multiplications in the precomputation is fixed for the maximum window
size w and is known to the attacker. As the misdetection of the victim’s execution of
modular multiplication frequently occurs, the attacker cannot always detect all modular
multiplications. Therefore, we detect the timing of the first loop start if Probe (C) and/or
(D) detects the entry of a loop after detection of more-than 0.8× (2w−1 − 1) successive
modular multiplications (12 for w = 5).

Then, after translating the acquired Flush+Reload trace to the S–M sequence in the
aforementioned manner, we replace an S at the tail with an M, as the least significant bit
of the exponent is always one (i.e., the exponents Dp and Dq are always odd). In addition,
in the sliding window exponentiation, two consecutive modular multiplications are never
performed (except in precomputation). Therefore, if we detect two consecutive M’s, we
replace the latter M with S.

We further correct errors according to the number of squarings in the exponentiation.
Although the number of multiplications is variable, the number of squarings is fixed and
equal to the bit length of the exponent (512 + b for exponent-blinded 1,024-bit RSA–CRT,
where b is the mask bit length). In the proposed method, we count the number of S in
the S–M sequence derived through the above procedure. If the number of S’s is greater
than expected, some M’s may have been misrecognized as S’s due to the misdetection(s) of
the entry of the loop (i.e., Probes (C) and (D)). Therefore, the proposed method corrects
the error by repeating the following procedures until the number of S’s is equal to the
expected number (this is the aforementioned error-correction method): We search for the
time slots where Probe (C) does but Probe (D) does not detect the loop entry one or two
slot(s) after an S; we count the number of S’s between two M’s around the detection of
Probe (C); and, if the counted number is greater than two, we replace the S detected at
the time slot with Probe (C) to an M.

Experimental evaluation. We generated 100 random RSA–CRT secret keys, and per-
formed an experimental Flush+Reload attack 1,000 times for each key. The experimental
conditions were the same as the above. Libgcrypt 1.7.8 RSA–CRT utilizes a 128-bit mask,
and the mask was randomly generated for each trial. We then translated the acquired
Flush+Reload traces into an S–M sequence using the proposed method. Figure 2 shows a
histogram of the number of errors in the estimated S–M sequence. The number of errors
was calculated as the Levenshtein distance between the true and estimated S–M sequences,
as proposed in [UTHH21]. For comparison, Figure 2 also shows the result of Bernstein
et al.’s Flush+Reload attack on Libgcrypt 1.7.6 in [BBG+17]8. In the experiment, we
could obtain a completely correct S–M sequence 10% of the time, whereas the conventional
method never obtained correct one. Thus, we could confirm the improvement and effec-
tiveness of the proposed method, which enables us to use a correct S–M sequence essential
for the following steps, even with the exponent blinded.

In the following of this section, we assume that the S–M sequence estimated using

8We derived the values for Bernstein et al. by visually reading the histogram of Fig. 7 in their
literature [BBG+17]. Note that Libgcrypt 1.7.6 does not employ the exponent blinding; therefore, the
exponent is given by 512 bits, shorter than that in Libgcrypt 1.7.8.

Rei Ueno and Naofumi Homma 255

0 5 10 15 200.00

0.04

0.08

0.12

0.16

0.02

0.06

0.10

0.14
Bernstein et al.
This study

Errors

Fr
eq

ue
nc

y

Figure 2: Histogram of number of errors in estimated S–M sequence.

Flush+Reload is completely correct as we can obtain the correct S–M sequence due to the
improved Flush+Reload attack. See Section 4.2.3 and Section 4.4.2 for discussion on the
impact of using real traces to the success rate.

3.3 Step (ii): Reversing partial bits of blinded exponents
In this step, we reverse the S–M sequence to the partial bits of the exponent using van
Vredendaal’s and Breitner’s algorithm. At this step, we can obtain approximately 41.9%
bits of the exponent on average for 1,024-bit RSA–CRT using the sliding window with
w = 5.9 The result of this step can be treated as random-bit leak with exponent blinding
as the S–M sequences are (supposed to be) correct. See [vV18,Bre17] or Section 2.4 for
the reversing algorithm.

3.4 Step (iii): Estimation of random masks using modified Schindler–
Wiemers continued fraction attack

As described in Section 2.6, the Schindler–Wiemers continued fraction attack was originally
presented for RSA–CRT key recovery from the bit-flip leak of blinded exponents. We
modify and employ it to estimate the random masks used for the exponent blinding in
addition to the upper bits of p, q, Dp, and Dq from the random-bit leak.

Algorithm 2 shows the proposed method to estimate the random mask and upper bits
of p using the continued fraction attack. Given ν blinded exponents with some uncertain
bits (i.e., random-bit leak) obtained by Steps (i) and (ii), Algorithm 2 returns an estimated
random mask rp,µ used for blinding Dp,µ and the upper 2b − 2 bits of p as the best
approximation. Because this attack utilizes an approximation, the estimation results are
not always correct. Therefore, we use ν blinded exponents and choose the most likely
result. The success rate is evaluated in Section 4.2. Here, we describe the estimation of p
and its mask, but Algorithm 2 can be also used for the estimation of q and its mask. The
proposed method combines the Schindler–Wiemers continued fraction approximation with
an exhaustive guess of uncertain bits in the most significant bits. At Line 6, given a triple
of blinded exponents with uncertain bits (D′p,µ1

, D′p,µ2
, D′p,µ3

), we generate a set Gµ1,µ2,µ3

that contains candidates for (D′p,µ1
, D′p,µ2

, D′p,µ3
) with an exhaustive guess of uncertain

bits in the upper 2b− 2 bits, whereas all the remaining lower uncertain bits are substituted
with zero. This is because the lower bits have less impact on the approximation by the
continued fraction, and ignoring the uncertain lower bits yields a reduced computational
complexity. Note that the use of upper 2b− 2 bits is necessary for a good estimation of

9In [BBG+17], the libgcrypt RSA–CRT implementation used w = 4. The difference is because of the
exponent blinding. The Libgcrypt implementation uses a window size of w = 5 for a 630-bit exponent (i.e.,
512-bit RSA–CRT secret key blinded with 128-bit mask, whereas it uses w = 4 for a 512-bit exponent.

256 How Secure is Exponent-blinded RSA–CRT with Sliding Window Exponentiation?

Algorithm 2 Estimation of upper 2b− 2 bits of p
Input: D′p,1, D′p,2, . . . , D′p,µ, . . . , D′p,ν (ν blinded exponents with random-bit leaks)
Output: p̃ (Estimation of p, upper 2b− 2 bits of which is likely correct)
1: parameter ν; . Number of estimated blind exponents with random-bit leak
2: parameter b; . Mask bit length
3: Function ModifiedContinuedFractionAttackν,b(D′p,1, D′p,2, . . . , D′p,ν)
4: set S ← {};
5: for each (µ1, µ2, µ3) ∈ Z3 such that 1 ≤ µ1 < µ2 < µ3 ≤ ν do
6: set Gµ1,µ2,µ3 ← GuessingUpperUncertainBits2b−2(D′p,µ1 , D

′
p,µ2 , D

′
p,µ3);

7: for each (D̃p,µ1 , D̃p,µ2 , D̃p,µ3) ∈ Gµ1,µ2,µ3 do . Continued fraction expansion

8: Expand
∣∣∣ D̃p,µ1−D̃p,µ3
D̃p,µ1−D̃p,µ2

∣∣∣ to an approximate continued fraction as x′

y′ while x′ ≤ 2b−1 and

y′ ≤ 2b−1;
9: if x′ ≤ y′ then
10: int p′ ←

⌊∣∣∣ D̃p,µ1−D̃p,µ3
x′

∣∣∣⌋;
11: else
12: int p′ ←

⌊∣∣∣ D̃p,µ1−D̃p,µ2
y′

∣∣∣⌋;
13: end if
14: if 2511 < p′ < 2512 then
15: S ← S ∪ {p′};
16: end if
17: end for
18: end for
19: int p̃← arg maxp′∈S ValS(p′);
20: return upper 2b− 2 bits of p̃;
21: end Function

the b-bit random mask. Then, at Lines 8–13, we approximate p as p′ using the continued
fraction expansion for all candidates in Gµ1,µ2,µ3 . Because p should be in the range of
(2511, 2512) for 1,024-bit RSA–CRT, we consider the continued fraction result as a good
approximation if 2511 < p′ < 2512, and preserve it in a set of candidates S.

After examining the continued fraction approximation for all candidates in Gµ1,µ2,µ3 for
any (µ1, µ2, µ3), we determine the most likely approximation according to the valuation
function ValS at Line 19. Here, we utilize the valuation function derived by Schindler and
Wiemers. We first sort the candidates in increasing order. Let p′h be the h-th candidate
such that p′1 < p′2 < · · · < p′h < · · · < p′|S|. The candidates would be dense around the
correct p, whereas they would be sparse if they are far from p. The valuation function for
p′h is calculated using its eight neighborhoods10 and is defined as

ValS(ph) :=
∑

ω∈{±1,±2,±3,±4}

f

(∣∣∣∣p′h − p′h+ω
2512−2b

∣∣∣∣) , (4)

where f denotes a probability density function for a random variable representing the
fraction in the attack (see [SW17, Equation (44)]) and is given by

f (α) =


11
12 −

31α
60 if α < 1,

− 1
12 + α

60 + 2
3α2 − 1

5α4 if 1 ≤ α < 2,
4

3α3 − 1
α4 if 2 ≤ α.

Thus, at Line 19, we determine the best approximation as the candidate with the maximum
valuation, the upper 2b− 2 bits of which are supposed to be equivalent to p. However, in
practice, we cannot always obtain the best approximation with the maximum valuation
in Algorithm 2, which may be due to the influence of lower bits on the approximation.

10The value of eight was determined according to our experiment.

Rei Ueno and Naofumi Homma 257

Therefore, we may have several candidates for p with a relatively large valuation, as in the
experiment in Section 4.2.

Hereafter, we estimate the upper 2b − 2 bits of Dp,µ and its random mask from the
estimated p̃. We choose one D̃p,µ such that the exposed bits ratio exceeds 50% if we
completely estimate its upper 2b− 2 bits (this is necessary for the feasible computation
of Step (iv)). Then, we also choose two blinded exponents D̃p,µ1 and D̃p,µ2 such that
the number of exposed bits in the upper 2b− 2 bits is maximized. Then, we perform a
continued fraction attack using the above three blinded exponents with an exhaustive guess
of uncertain bits as well as Lines 6–16 in Algorithm 2, and we obtain a set of candidates
S. We pick one p′ from S such that the upper 2b− 2 bits of p′ match those of p̃ as much
as possible. Here, we consider D̃p,µ corresponding to p′ as the estimation of Dp,µ (i.e., the
upper 2b− 2 bits of D̃p,µ are equivalent to Dp,µ). The random mask rp,µ is estimated by

rp,µ =
⌊
D̃p,µ

p̃

⌋
,

according to the approximate equation of [SW17, Equation (54)]. For a reliable random
mask estimation, we can perform this procedure using several pairs of D̃p,µ1 and D̃p,µ2 for
different µ1 and µ2 that have many exposed bits in the upper 2b− 2 bits.

3.5 Step (iv): Recovery of exponent using extended Heninger–Shacham
partial key exposure attack

In this step, we extend the Heninger–Shacham key exposure attack such that we can
derive the RSA–CRT secret key using public information, rp,µ, rq,µ′ , p̃, q̃, D̃p,µ, and D̃p,µ′

estimated in Step (iii) using a branch-and-prune method (note that it is not necessary for
µ 6= µ′ to hold).

Recall that the blinded exponents in RSA–CRT are given by Dp = dp + rp(p− 1) and
Dq = dq +rq(q−1). Substituting dp = Dp−rp(p−1) and dq = Dq−rq(q−1) into Eqs. (2)
and (3), respectively, we can derive the exponent-blinded version of the Heninger–Shacham
constraint equations as

pq = N,

eDp = (erp + kp)(p− 1) + 1,
eDq = (erq + kq)(q − 1) + 1,

where the terms erp + kp and erq + kq are known to the attacker, as e is the public key, kp
and kq are exhaustively searchable for the standard e, and rp and rq are estimated as rp,µ
and rq,µ′ at Step (iii), respectively. Let γp,µ = erp,µ + kp and γq,µ′ = erq,µ′ + kq. As with
the non-exponent-blinded version, the above equations are translated to the constraint
relation for the exponent-blinded RSA–CRT as

p[i] + q[i] ≡
(
N − p(i)q(i)

)
[i] mod 2,

Dp[i+ τ(γp,µ)] + p[i] ≡
(
γp,µ(p(i) − 1) + 1− eD(i+τ(γp,µ))

p

)
[i+ τ(γp,µ)] mod 2,

Dq[i+ τ(γq,µ′)] + q[i] ≡
(
γq,µ′(q(i) − 1) + 1− eD(i+τ(γq,µ′))

q

)
[i+ τ(γq,µ′)] mod 2.

Using these relations, we can derive a set of reduced key candidates using a branch-
and-prune in the same manner as the Heninger–Shacham attack; that is, we construct a
branch tree of slice nodes (in which τ(kp) and τ(kq) are replaced with τ(γp,µ) and τ(γq,µ′),
respectively) and prune slice nodes that are inconsistent with the exposed bits of p, q,
D̃p,µ, and D̃q,µ′ . Here, their upper bits are also estimated in Step (iii) in addition to the
exposure via side-channel. Thanks to this, the overall exposed bits ratio exceeds 50%,
which allows for a sufficiently feasible branch-and-prune.

258 How Secure is Exponent-blinded RSA–CRT with Sliding Window Exponentiation?

Remark 3. Strictly, the 1,024-bit RSA–CRT secret keys are given in the range of (2511.5, 2512)
(which is similar for larger key sizes). This fact can be used for a further reduction of key
candidates and/or computational complexity in principle. However, the proposed attack
do not exploit this fact for the reduction. This is because this fact is basically related
to a constraint of MSBs of secret primes, Dp, and Dq. The upper-bits of Dp and Dq

estimated using Flush+Reload include less errors and are more reliable than lower-bits, as
the target implementation here is the left-to-right sliding window that scans the exponent
from the MSB. In addition, at Step (iii), the constraint can be used to estimate the value
of erasure bits, which results in a little reduction of computational cost, as the constraint is
almost solely related to some MSBs. It is a future work to develop a strategy to efficiently
incorporate the constraint in the attack.

4 Evaluation

4.1 Attack complexity

The computational bottleneck of the proposed attack is the continued fraction expansion
with an exhaustive guess of uncertain bits in Step (iii). The number of continued fraction
expansions depends on the uncertain bits in the upper 2b− 2 bits of the blinded exponents.
Let εb be the expected number of uncertain bits in the upper 2b − 2 bits of blinded
exponents. For ν blinded exponents in a random-bit leak, The number of continued
fraction expansions to be performed is

23εb
(
ν

3

)
≈ (2εbν)3

6 ,

because we are expected to guess 23εb bits for three blinded exponents at Line 6 in
Algorithm 2 and we should repeat this for 3-out-of-ν combinations of exponents. Since
about 41.9% bits are exposed by van Vredendaal’s and Breitner’s reversing algorithm on
average when w = 5, εb is approximately given by (1− 0.419)× (2b− 2). For example, if
ν = 10, the expected number of continued fraction expansion is approximately 259.7, 2115.4,
and 2227.0 for b = 16, 32, and 64, respectively (ν = 10 would be sufficient for a successful
attack as evaluated in Section 4.2). Note that, if we do not estimate the random mask nor
reduce its candidates at Step (iii), the branch-and-prune at Step (iv) is critically infeasible.

Moreover, this complexity can be improved by selecting blinded exponents with fewer
uncertain bits in the upper 2b − 2 bits from a lot of blinded exponents. We performed
20,000 exponent-blinded RSA–CRT decryptions for a secret key, and counted the numbers
of uncertain bits obtained by van Vredendaal’s and Breitner’s reversing algorithm from its
S–M sequence. Then, we selected ten blinded exponents such that the uncertain bits in
the upper 2b− 2 bits are minimized, which indicates that we set ν = 10 for 20,000 blinded
exponents in random-bit leak. We repeated this procedure for 100 RSA–CRT secret keys
independently and randomly generated. Table 4 lists the averaged numbers of uncertain
bits and the resulting complexities for b = 16, 32, and 64, where complexity indicates the
number of required continued fraction expansions. From Table 4, we confirm that the
proposed attack can be carried out with significantly less complexity by selecting good
10-out-of-20,000 blinded exponents compared to the above straightforward manner (i.e.,
by just using ten exponents). However, the attack is still infeasible even on a 64-bit mask,
which requires far greater complexity than breaking 1,024-bit RSA. Moreover, an attack
on a 32-bit mask would also be infeasible as Schindler and Wiemers mentioned that the
feasible number of continued fraction expansions would be at most 260 [SW17]. Thus, we
confirm that a 32-bit mask would be sufficient to defeat the proposed attack.

Rei Ueno and Naofumi Homma 259

Table 4: Complexity of proposed attack using 10-out-of-20,000 cache traces

Mask bit length b Averaged number of uncertain bits Complexity
in the upper 2b− 2 bits

16 6.08 225.6

32 20.1 267.7

64 51.3 2161

4.2 Experimental validation and success rate evaluation
4.2.1 1,024-bit RSA–CRT

We then experimentally validated the proposed attack. We here demonstrate the exper-
imental attack using a 16-bit blinding mask (i.e., b = 16) for the feasibility. Here, we
particularly evaluate the success rate of Step (iii) in addition to its computational time,
assuming that the attacker obtains complete S–M sequences in Step (i).

We performed Z exponent-blinded 1,024-bit RSA–CRT decryptions for a secret key,
obtained the exposed bits of the blinded exponent from its S–M sequence according to van
Vredendaal’s and Breitner’s reversing algorithm (i.e., Step (ii)), and then execute Step (iii).
We considered Step (iii) to be succeeded if we correctly reconstructed rp,µ and rq,µ′ and
the valuation ranks of correct p̃ (or q̃) were less than about 1,500.11 We evaluated the
success rate for 100 secret keys independently and randomly generated. As a result, when
ν = 10, we confirm that the success rates were 36/100, 72/100, and 81/100 for Z = 10,000,
20,000, and 30,000, respectively, which implies the feasibility of the proposed attack with
a meaningful success rate.

Finally, we actually executed the computation of Steps (ii)–(iv) given the correct S–M
sequences. We used an Intel Xeon Gold6144 with a 384GB memory. The execution times
for Steps (ii), (iii), and (iv) were 12m, 2 h, and 3 h, respectively12. Consequently, we
confirm that the proposed attack (given the correct S–M sequence) can recover the secret
key of 1,024-bit RSA–CRT with a sliding window using a 16-bit mask within a practical
time.

4.2.2 2,048-bit RSA–CRT

We then apply the proposed attack on 2,048-bit RSA–CRT implementation with a 20-bit
mask. The sliding window exponentiation for a 1,044-bit exponent (i.e., a 1,024-bit secret
key for RSA-CRT with a 20-bit mask) in Libgcrypt uses a window size of w = 5. As the
window size is identical to that of 1,024-bit RSA–CRT, Steps (i), (ii), and (iv) are carried
out in the same manner. The feasibility of the extended Heninger–Shacham attack is also
the same because the ratio of uncertain bits are the same. The computational complexity
order of Step (iii) only depends on the mask bit length (ignoring the difference in the cost
of continued fraction expansion between 512 and 1,024 bits), because the complexity is
determined by the number of uncertain bits in the upper 20 bits of three blinded exponents.
Therefore, the proposed attack can be applicable to 2,048-bit RSA–CRT with almost the
same computational complexity in principle. We experimentally evaluated the success
rate (i.e., the probability of the correct random mask haven a rank better than 1,500) of

11p̃ is correct if its upper 2b− 2 bits are equivalent to p. The rank of p̃ indicates the position of p̃ if we
sort all candidates in decreasing order of their valuations. Note here that the rank of 1,500 does NOT mean
that we require a full computation of the partial key exposure attack for 2,000,000 (≈ 1,5002) candidates
for p̃ and q̃ in Step (iv). The branch-and-prune algorithm would (empirically) terminate immediately with
no solution if we use a pair of wrong key and mask candidates; hence, we can easily distinguish the wrong
key candidate without an intensive computation.

12For the ease of computation in Step (iii), we used only the upper 3b− 2 bits of p′h to calculate the
valuation in Equation (4), because the lower bits have little influence on the result. Note also that “2 h”
in Step (iii) is the execution time if we have the correct S–M sequence only for Step (ii), and “3 h” in
Step (iv) is the execution time for the pair of correct key and mask candidates.

260 How Secure is Exponent-blinded RSA–CRT with Sliding Window Exponentiation?

Step (iii) for 2,048-bit RSA–CRT using 200 randomly generated RSA–CRT secret keys in
the same manner as Section 4.2.1 with Z = 215 = 32768. As a result, we confirmed that
the success rate of random mask estimation was about 7%, which was lower than that
of 1,024-bit RSA–CRT. This would be because the ratio of MSB length utilized for the
continued fraction approximation for 2,048-bit RSA–CRT is almost the half of that for
1,024-bit RSA-CRT, which makes it more difficult to perform a reliable approximation and
to estimate the random mask accurately in the case of 2,048-bit RSA–CRT, even though
the mask bit length is identical.

Though the success rate of 7% is not very high, the proposed attack may still be
practical if the attack can obtain a large number of traces and lead to one success. With
regard to Flush+Reload trace acquisition, the attacker cannot achieve a very high accuracy
in the S–M sequence estimation. However, as discussed in Section 4.2.3, the attacker can
utilize S–M sequences even with errors for the random mask estimation, and repeat the
extended Heninger–Shacham algorithm many times until a correct sequence is obtained.
The adoption of advanced partial key exposure attacks for random-bit and bit-flip hybrid
leakage model would be another possible option to make the attack practical. In contrast,
if we consider an SPA-like attack which estimate the S–M sequence power traces, the
accuracy in estimating S–M sequence is sufficiently high. In fact, a previous study have
demonstrated a complete estimation with 80–100% accuracy from only one power trace
(e.g., [SIUH22]), which make our attack practical.

4.2.3 On attack using real Flush+Reload traces

In a real attack, we should consider S–M sequences that may include errors, as evaluated in
Section 3.2. However, the random mask estimation using the continued fraction expansion in
Step (iii) is still available and valid even if the S–M sequences include errors. We conducted
an experimental continued fraction expansion using Flush+Reload traces including errors,
which were generated to simulate real Flush+Reload traces. As a result, we confirmed that
its success rate was comparable with that in Section 4.1. This is because only a few MSBs
are utilized for the continued fraction expansion, and most other lower bits have little
impact on the approximation result of the continued fraction expansion. In the continued
fraction expansion, we always guess uncertain bits in the lower bits (i.e., bits excluding the
upper 2b−2 bits) as zero and do not utilize the lower bits; therefore, the errors in the lower
bits are rather trivial for the continued fraction expansion approximation. Meanwhile, the
MSBs of estimated exponents are more reliable than other lower bits because of the nature
of the left-to-right scanning. Thus, we can use S–M sequences with errors acquired as real
Flush+Reload traces.

In contrast, we require a correct S–M sequence for the extended Heninger–Shacham
attack in Step (iv). To this end, we repeat Step (iv) until we obtain a correct S–M sequence
to recover a correct key. We confirmed from our evaluation result in Section 3.2 that
the value of ν was not large, and would be sufficiently practical. Here, some attacks for
random-bit and bit-flip leaks have been studied [KSI13], and the extension and use of such
attacks for our situation may improve the success rate of the proposed attack (in fact,
our extension of Heninger–Shacham attack in Section 3.5 would be applicable to other
related attacks with the similar ideas). Although the S–M sequence errors do not result in
uniform bit errors assumed in conventional attacks, these attacks would be available if the
number of errors is sufficiently small. Thus, the success rate of our attack is comparable
with the evaluation in Section 4.2.1 and Section 4.2.2. See Section 4.4.2 for an estimation
of success rate of the proposed attack using real traces.

Rei Ueno and Naofumi Homma 261

4.3 Relation between implementation performance and mask bit length
against proposed attack

Practical RSA–CRT implementations in open-source libraries commonly employ longer-
than 128-bit masks. In this section, we investigate the relation between implementation
performance and mask bit length against the above-mentioned attack. The mask bit length
requirement considered here is against only the proposed attack using Flush+Reload13

In this section, we refer to “modular multiplication” as both squaring and multiplication
without distinction, whereas we simply say “squaring” and “multiplication” to refer to
them individually.

We first estimated the performance improvement through analysis of the number
of modular multiplication in the exponentiation, and then measured the computational
time of RSA–CRT with different mask bit lengths in our environment. In the blinded
exponentiation, the number of squarings is fixed as l + b, where l is the bit length of
exponent (e.g., l = 512 for each subkey dp and dq in the 1,024-bit RSA–CRT decryption)
and b is the mask bit length14. The number of multiplications in the precomputation was
also fixed as 2w−1 − 1, where w is the maximum window size. In contrast, the number
of multiplications in the main loop varies depending on the exponent, and its analytical
evaluation would be difficult. Therefore, we experimentally evaluated it by generating
100 random RSA–CRT secret keys, performing 1,000 blinded exponentiations for each
generated key (that is, performing 100,000 exponentiations in total), and counting the
number of multiplications. Figure 3 shows a histogram of the number of multiplications
in the main loop for a 512-bit exponent blinded by a mask with lengths of b = 32, 64,
and 128. The modes were 92, 97, and 108 for b = 32, 64, and 128, respectively, which are
approximately equal to the averages. This indicates that the overall numbers of modular
multiplications in the exponent-blinded sliding window is given by 652, 688, and 764 on
average for b = 32, 64, and 128, respectively. Thus, a sliding window with 32-bit and
64-bit mask requires approximately 15% and 10% fewer modular multiplications (i.e.,
computational cost), respectively, than that with a 128-bit mask, and even the security
against side-channel attacks would be preserved.

We also experimentally evaluated the RSA–CRT decryption execution time using
32-bit, 64-bit, and 128-bit masks. We performed 1,000 RSA–CRT decryptions for 100
RSA–CRT secret keys (100,000 decryptions in total), as above, and measured the execution
time. We used an Intel i5-3470 CPU with a 6GB memory and CentOS7 operating system
(as same as the environment in Section 3.2). The RSA–CRT software was derived from
Libgcrypt 1.7.8 [Lib17]. It originally uses a 128-bit mask, and we modified it for 32-bit
and 64-bit mask implementations. As a result, the average execution times were 0.869ms,
0.964ms, and 1.05ms for b = 32, 64, and 128, respectively. We confirm that the execution
times are consistent with the number of modular multiplications, as discussed above; that
is, the RSA–CRT software using 32-bit and 64-bit masks required approximately 15% and
10% less execution time, respectively, than that using 128-bit mask.

Comparison with fixed window exponentiation. Fixed window is the fastest constant-
time exponentiation, and is employed in many open-source software libraries. A fixed
window uses 2w − 1 multiplications in the precomputation (where w is the window size)
and l squarings and dl/we multiplications in the main loop (where l is the bit length
of the exponent). In total, the number of modular multiplications in a fixed window is
(2w − 1) + l + dl/we unless the exponent blinding is present. As the fixed window is a

13Note that all possible attacks should be considered to determine the mask length depending on the
implementation and usage.

14Some sliding (or fixed) window implementations omit the leading squarings before the first mul-
tiplication. In this study, for the simplicity, we ignored it and supposed that the squarings are not
omitted.

262 How Secure is Exponent-blinded RSA–CRT with Sliding Window Exponentiation?

80 85 90 95 100 105 110 115 1200.00

0.02
0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
b = 32
b = 64
b = 128

Multiplications

Fr
eq

ue
nc

y

Figure 3: Histogram of number of multiplications in sliding window main loop for 512-bit
blinded exponent.

deterministic algorithm that is secure against SPA-like attacks even without exponent
blinding, we compared it with the exponent-blinded sliding window. When l = 512 and
w = 5, the fixed window exponentiation requires 645 modular multiplications. Therefore,
a fixed window without exponent blinding and the sliding window with a 32-bit mask
(which requires 652 modular multiplications) would have comparable execution times15.

Note that it should be better to adopt exponent blinding if we should consider attacks
other than SPA-like ones (e.g., timing attacks, collision-based/horizontal power analysis
attacks, power analysis attacks using statistical tools, and Prime+Probe attacks [HMA+08,
HKT12,Sch15,IGI+16,YGH18,PCBP21]). In this case, a sliding window would be superior
to a fixed window for any mask bit length, as a sliding window is inherently faster than
fixed window. In fact, exponent blinding would be effective in mitigating or preventing
timing attacks, some sophisticated power analysis attacks, and Prime+Probe attacks.

4.4 Discussion
4.4.1 Comparison to state-of-the-art attacks

An important discussion point is how optimal our analysis is with respect to existing
attacks. The strategy of the proposed attack has a common point with Fouque et al.’s
attack [FKJM+06], namely, guessing random masks before recovering the secret key. As
Fouque et al.’s attack and a follow-up study by Bauer [Bau12] are only attacks applicable
to the exponent-blinded RSA (without CRT) with random-bit leak to the best of authors’
knowledge, this strategy would be representative of the partial key exposure attack on an
exponent-blinded RSA with a random bits leak in the present.

Van Vredendaal’s and Breitner’s recovering algorithm is optimal in the number of
reversed bits, although it further improved by Oonishi et al. [OHK19]. It was experimentally
shown that Oonishi et al.’s attack can reduce the entropy by 0.90 bits uncertain when
w = 5 after van Vredendaal’s attack16. Therefore, the improved reversing algorithm can
reduce the entropy of the upper 2b bits in Step (iii) using 10-out-of-20,000 traces from 6.08,
20.1, and 51.3 bits (in Table 4) to 5.50, 19.2, and 46.3 bits for b = 16, 32, and 64, followed

15As the fixed window is a deterministic exponentiation, its S–M sequence leaks no information about
secret key. Therefore, the fixed window may adopt a dedicated squaring algorithm, which is 1.5–2.0 times
faster than a multiplication. If so, a fixed window would be superior to an exponent-blinded sliding window.
However, in practice, many fixed window implementations do not employ such dedicated squaring, but
instead use an identical modular multiplication code for both squaring and multiplication.

16The value of 0.904 bits is calculated as 534/591, because it was shown that their attack can reduce
the entropy of uncertain bits from 591 to 534 when the exponent is 1,024 bits and w = 5.

Rei Ueno and Naofumi Homma 263

by 223.8, 264.9, and 2146 continued fraction expansion, respectively, which indicates that
the attack on a 64-bit mask is still infeasible (note that these complexities were calculated
assuming that the attacker always obtained only correct S–M sequences via a side-channel).

Schindler–Wiemers continued fraction attack is the state-of-the-art method which can
be used for estimating the random mask and the upper bits of blinded exponents. As the
key-recovery capability/limitation of the (extended) Heninger–Shacham branch-and-prune
attack has been analyzed [PPS12], the proposed attack would be meaningfully optimal
with respect to the existing attack. Although there is a Coppersmith-type partial key
exposure attack (i.e., attack with continuous bit leak using LLL reduction) in the presence
of exponent blinding [CMS15], the Coppersmith-type attack cannot work with a bit
flips leak that suits to the sliding windows leak, and there is no known way to combine
Coppersmith-type and Heninger–Shacham attacks even for non-exponent-blinded cases.
Moreover, the complexity of the proposed attack was evaluated for the case that the
attacker can obtain many traces as in Table 4. Thus, we believe that it is non-trivial to
improve the proposed attack using existing techniques, which indicates that protecting
the sliding window exponentiation using a 32-bit mask would be valid and sufficient in
our attack situation, unless yet another new partial key exposure attack that significantly
improves the capability of key recovery were to be found.

4.4.2 Estimation of real attack costs

In the above experiment, we employed simulated Flush+Reload traces while we evaluated
them in a real setting in Section 3.2. In addition, our evaluation for Step (iv) assumed
that the guessed random masks at Step (iii) and S–M sequence were completely correct
(although it validated the soundness of our extended Heninger–Shacham algorithm). Thus,
our experimental attack is different from real ones as follows: (1) there would be a difference
between simulated and real traces, and (2) the extended Heninger–Shacham algorithm
should be repeated until correct S–M sequences and guessed random masks are selected.
We here discuss about the cost (i.e., the number of Flush+Reload traces and time duration)
for a successful real attack, considering the differences.

The difference (1) has an influence on both Steps (iii) and (iv). However, the influence
on the random mask guess in Step (iii) would be negligible because the continued fraction
expansion attack used in Step (iii) utilizes some upper bits of an estimated secret exponent
as mentioned in Section 4.2.3. The errors included in the other lower bits are ignored due
to the approximation by the continued fraction expansion. In addition, the upper bits
estimated by Flush+Reload (followed by Step (ii)) are more reliable than the other lower
bits due to the nature of the exponent bit scanning in the left-to-right manner. In fact, we
confirmed by simulation that the random mask could be successfully guessed even using
S–M sequences including errors (that imitates real errors evaluated in Section 3.2 and
discussed in [UTHH21]) with a high success rate comparable to that using correct S–M
sequences.

As for the difference (2), the Heninger–Shcham algorithm requires a pair of fully correct
partial key information for dp and dq (Dp and Dq in the case of the proposed attack). This
indicates that at least one correct S–M sequence for each Dp and Dq should be included
in the results of Step (i). In addition, at Step (iii), we must succeed in guessing a random
mask for the correct S–M sequence, although the success rate (which is defined as the
probability of the correct mask having a rank better than about 1,500 in this paper) is
not 100% in our experiment. Therefore, there is a tradeoff between the success rate and
the number of traces/computational cost. More precisely, in order to achieve a sufficient
success rate for key recovery, we must use the S–M sequences at Step (iii) as times as it is
guaranteed with a meaningful probability that a correct S–M sequence is included in the
inputs to Step (iii) and a random mask is guessed successfully for at least one correct S–M
sequence. Note here that we can use Dp and Dq for different exponentiations, and do not

264 How Secure is Exponent-blinded RSA–CRT with Sliding Window Exponentiation?

have to simultaneously succeed in the correct guesses.
Recall that the frequency of a completely correct S–M sequence acquisition at Step (i)

was about 10% in our experiment. Assume that the success of random mask guess is
independent of whether the S–M sequence is completely correct or not. For 1,024-bit
RSA–CRT, the success rate at Step (iii) was 36%, 72%, and 82% for Z = 10,000, 20,000,
and 30,000 in our experiment, respectively. This yields a success probability for secret key
recovery of 3.6%, 7.2%, and 8.2% for one trial of the proposed attack. As well, for 2,048-bit
RSA–CRT, the success rate at Step (iii) was 7% for Z = 32,768 in our experiment, which
yields a success probability of 0.7%. Here, an attacker can improve the success probability
by repeating the trial of Step (iii) for different input datasets (i.e., S–M sequences), as
Z = 30,000 or so would be feasible for some applications, and the attacker may use more
traces. In other words, the repeated attempt improves the overall probability of success in
recovering the correct secret key at the expense of computational cost.

As mentioned above, we may not always require a full computation of the extended
Heninger–Shacham algorithm for wrong candidates because the Heninger–Shacham algo-
rithm empirically terminated immediately and did not take much time for wrong candidates;
Step (iv) would not be the computational bottleneck, compared to Step (iii). Thus, the
proposed attack would be sufficiently feasible in the real world with a non-negligible success
rate.

4.4.3 Relation between attack feasibility and window size

The computational bottleneck of the proposed attack is the number of continued fraction
expansions at Step (iii) that increases by the number of uncertain bits at the upper bits
of the secret exponent. The number of uncertain bits fully depends on the window size
w. In this paper, we evaluated w = 5 which is employed exponent-blinded RSA–CRT
in Libgcrypt. In contrast, if we want to reduce the memory complexity for storing the
pre-computation table, we can choose a smaller window size. In [OHK19], Oonishi et al.
showed that the expected ratios of uncertain bits after Step (ii) were 50.19% and 58.08%
for w = 4 and w = 5, respectively. This indicates that the sliding window leakage for
w = 4 contains approximately 15% less uncertain bits than that for w = 5, which makes
the proposed attack more feasible. Assume here that the distribution of the number of
uncertain bits in sliding window leakage is approximately identical for practical window
sizes except for the mean. When w = 4, the expected numbers of uncertain bits included
in the upper 2b− 2 bits corresponding to Table 4 would be 5.17, 17.1, and 43.6 for b = 16,
32, and 64, respectively. These numbers correspond to the complexities of 222.9, 258.7,
and 2138, respectively. Assuming that 260 continued fraction expansions are feasible as
mentioned above, 1,024-bit RSA–CRT with b = 32 and w = 4 would be vulnerable to the
proposed attack. Moreover, the success rate of Step (iii) would be improved for larger
mask bit lengths, as discussed in Section 4.2.2. Thus, the proposed attack could be more
feasible and successful for a smaller window size.

In contrast, the number of uncertain bits in the sliding window leakage increases by
the window size. For example, according to Oonishi et al. [OHK19], its expected ratio for
w = 6 was 63.91%, which is approximately 10% larger than that for w = 5. With regard
to Table 4 as well, when w = 6, the expected numbers of uncertain bits included in the
upper 2b− 2 bits would be 6.69, 22.1, and 54.4 for b = 16, 32, and 64, respectively. These
numbers correspond to the complexities of 227.5, 273.7, and 2170, respectively. Although
the proposed attack would be still feasible for b = 16 and w = 6, a larger window size
yields more computational complexities in Step (iii) and Step (iv), and may make the
success rate worse. Note that a larger window value are optimal for a larger bit RSA–
CRT [Koc95] (although Libgcrypt implementation employs w = 5 even for 2,048-bit and
4,096-bit RSA–CRT). The above discussion indicates a further difficulty in applying the
proposed attack to larger-bit RSA–CRTs.

Rei Ueno and Naofumi Homma 265

4.4.4 Attack applicability

The proposed attack is applicable to exponent-blinded RSA–CRT with sliding window,
not limited to Libgcrypt, as summarized in Table 1. Some of them provide an option to
adopt the (message/exponent) blinding for a (more) secure exponentiation. For example,
the mbedTLS RSA–CRT with the sliding window has an option to adopt an exponent
blinding with a 28-byte mask. The proposed attack is applicable to such implementation
in the manner similar to Libgcrypt. As another attack direction/context, we can obtain
S–M sequences through an SPA, instead of Flush+Reload. As mentioned above, several
studies have demonstrated a complete estimation with about 80% accuracy from only one
power trace (e.g., [SIUH22]). Therefore, if a physical side-channel is available, the attacker
can correct S–M sequences more accurately than Flush+Reload, followed by Steps (ii),
(iii), and (iv) of the proposed attack, which would yield a practical key recovery.

5 Conclusion
This paper shows the fist security evaluation of exponent-blinded RSA–CRT implemen-
tations with sliding window exponentiation. We presented an improved a Flush+Reload
attack that accurately estimates the S–M sequence in the exponentiation, and new partial
key exposure attack on RSA–CRT applicable to the sliding window leakage. Combining
them, we showed the possibility of the full key recovery of 1,024-bit and 2,048 RSA–CRT
sliding window implementations with a 20-bit mask. Meanwhile, we also showed that
the proposed attack was not feasible against 32-bit or more masks. Accordingly, we
investigated the relation between implementation performance and mask bit length against
the proposed attack. Although we should consider all possible attacks to design a sufficient
countermeasure, our analyses result would help to determine a proper mask length against
Flush+Reload and SPA-like attacks.

The success rate of the proposed attack would be still not very high, although this
paper is the first report that demonstrated the possibility of exponent-blinded CRT–RSA
implementation using sliding window (even with a short mask). Our answer to the question
“How secure is exponent-blinded RSA–CRT with sliding window exponentiation?” would
be sufficiently secure in the current situation (at least against the proposed attack and
known state-of-the-art attacks), as the current major implementations adopt a sufficient
mask bit length. For further validation of our augmentation, it would be an important
future work to derive a formal security bound of the key exposure attack in the presence
of exponent blinding.

Acknowledgment
We owe our deepest gratitude to Mr. Soki Osawa for his valuable cooperation. Dr. Sylvain
Guilley gave us insightful comments and suggestions. We want to thank Dr. Diego F.
Aranha for the shepherding care. This study has been supported by JST CREST (Grant
No. JPMJCR19K5).

References
[ABF+16] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop van de Pol, and

Yuval Yarom. Amplifying side channels through performance degradation.
In Annual Computer Security Applications Conference, pages 422–435, 2016.

266 How Secure is Exponent-blinded RSA–CRT with Sliding Window Exponentiation?

[Aon09] Yoshinori Aono. A new lattice construction for partial key exposure attack
for RSA. In Public Key Cryptography—PKC 2000, volume 5443 of Lecture
Notes in Computer Science, pages 34–53, 2009.

[Bau12] Sven Bauer. Attacking exponent blinding in RSA without CRT. In Interna-
tional Workshop on Constructive Side-Channel Analysis and Secure Design,
volume 7275 of Lecture Notes in Computer Science, pages 82–88, 2012.

[BBG+17] Daniel J. Bernstein, Joachim Breitner, Daniel Genkin, Leon Groot Bruin-
derink, Nadia Heninger, Tanja Lange, Christine van Vredendaal, and Yuval
Yarom. Sliding right into disaster: Left-to-right sliding windows leak. In
International Conference on Cryptographic Hardware and Embedded Systems,
volume 10529 of Lecture Notes in Computer Science. Springer, 2017.

[BDF98] Dan Boneh, Glenn Durfee, and Yair Frankel. An attack on RSA given a small
fraction of the private key bits. In Advances in Cryptology—ASIACRYPT
1997, volume 1514 of Lecture Notes in Computer Seience, pages 25–34, 1998.

[BJ13] Aurélie Bauer and Éliane Jaulmes. Correlation analysis against protected
SFM implementations of RSA. In Progress in Cryptology—INDOCRYPT
2013, volume 8250 of Lecture Notes in Computer Science, pages 98–115, 2013.

[BM03] Johannes Blömer and Alexander May. New partial key exposure attacks on
RSA. In Advances in Cryptology—CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Seience, pages 27–43, 2003.

[Bre17] Joachim Breitner. More on dliding right. Cryptology ePrint Archive, Report
2018/1163, 2017. http://eprint.iacr.org/2018/.

[CFG+10] Christophe Clavier, Benoit Fiex, Georges Gegnerot, Myléne Roussellet, and
Vincent Verneuil. Horizontal correlation analysis on exponentiation. In Inter-
national Conference on Information and Communications Security, volume
6476 of Lecture Notes in Computer Science, pages 46–61, 2010.

[CMS15] Stelvio Cimato, Silvia Mella, and Ruggero Susella. New results for partial key
exposure on RSA with exponent blinding. In International Joint Conference
on e-Business and Telecommunications. IEEE, 2015.

[Cop97] Don Coppersmith. Small solutions to polynomial equations, and low exponent
RSA vulnerabilities. Journal of Cryptology, 10:233–260, 1997.

[Cor04] Jean-Sébastien Coron. Finding small roots of bivariate integer polynomial
equations revisited. In Advances in Cryptology—Eurocrypt 2004, volume 3027
of Lecture Notes in Computer Science, pages 492–505, 2004.

[Cor07] Jean-Sébastien Coron. Finding small roots of bivariate integer polynomial
equations: A direct approach. In Advances in Cryptology—CRYPTO 2007,
volume 4622 of Lecture Notes in Computer Seience, pages 379–394, 2007.

[EJMdW05] Matthias Ernst, Ellen Jochemsz, Alexander May, and Benne de Weger.
Partial key exposure attack on RSA up to full size exponents. In Advances
in Cryptology—Eurocrypt 2005, volume 3494 of Lecture Notes in Computer
Science, pages 371–386, 2005.

[FKJM+06] Pierre-Alain Fouque, Sébastien Kunz-Jacques, Gwenaëlle Martinet, Frédéric
Muller, and Frédéric Valette. Power attack on small RSA public exponent. In
International Workshop on Cryptographic Hardware and Embedded Systems,
volume 4249 of Lecture Notes in Computer Science, pages 339–353. Springer,
2006.

http://eprint.iacr.org/2018/

Rei Ueno and Naofumi Homma 267

[HKT12] Neil Hanley, HeeSeok Kim, and Michael Tunstall. Exploiting collisions in
addition chain-based exponentiation algorithms using a single trace. IACR
ePrint archive: Report 2012/485, 2012. https://eprint.iacr.org/2012/
485.

[HM08] Mathias Herrmann and Alexander May. Solving linear equations modulo divi-
sors: On factoring given any bits. In Advances in Cryptology—ASIACRYPT
2008, volume 5350 of Lecture Notes in Computer Seience, pages 406–424,
2008.

[HMA+08] Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi Satoh, and
Adi Shamir. Collision-based power analysis of modular exponentiation using
chosen-message pairs. In International Workshop on Cryptographic Hardware
and Embedded Systems, volume 5154 of Lecture Notes in Computer Science,
pages 15–29. Springer, 2008.

[HMM10] Wilko Henecka, Alexander May, and Alexander Meurer. Correcting errors in
RSA private keys. In Advances in Cryptology—CRYPTO 2010, volume 6223
of Lecture Notes in Computer Seience, pages 351–369, 2010.

[HS09] Nadia Heninger and Hovov Shacham. Reconstructing RSA private keys from
random key bits. In Advances in Cryptology—CRYPTO 2009, volume 5677
of Lecture Notes in Computer Scienece, pages 1–17. Springer, 2009.

[HSH+09] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Parl, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,
and Edward W. Felten. Lest we remember: cold-boot attacks on encryption
keys. Communication of the ACM, 52:91–98, 2009.

[IGI+15] Mehmet Sinan Inci, Berk Galmezoglu, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar. Seriouly, get off my cloud! Cross-VM RSA key recovery
in a public cloud. IACR ePrint archive: Report 2015/898, 2015. https:
//eprint.iacr.org/2015/898.

[IGI+16] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar. Cache attacks enable bulk key recovery on the cloud. In
International Conference on Cryptographic Hardware and Embedded Systems,
volume 9813 of Lecture Notes in Computer Science, pages 368–388. Springer,
2016.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Advances in Cryptology—CRYPTO 1999, volume 1666 of Lecture Notes
in Computer Science, pages 388–397. Springer, 1999.

[Koc95] Cetin Kaya Kocc. Analysis of sliding window techniques for exponentiation.
Computers & Mathematics with Applications, 30(10):17–24, 1995.

[KSI13] Noboru Kunihiro, Naoyuki Shinohara, and Tetsuya Izu. Recovering RSA
secret keys from noisy key bits with erasures and errors. In Public Key
Cryptography—PKC 2013, volume 7778 of Lecture Notes in Computer Science,
pages 180–197, 2013.

[Kun15] Noboru Kunihiro. An improved attack for recovering noisy RSA secret keys
and its countermeasure. In Provable Security, volume 9451 of Lecture Notes
in Computer Science, pages 61–81. Springer, 2015.

[Lib17] GNU Privacy Guard. https://www.gnupg.org, 2017.

https://eprint.iacr.org/2012/485
https://eprint.iacr.org/2012/485
https://eprint.iacr.org/2015/898
https://eprint.iacr.org/2015/898
https://www.gnupg.org

268 How Secure is Exponent-blinded RSA–CRT with Sliding Window Exponentiation?

[LYG+15] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-
level cache side-channel attacks are practical. In IEEE Symposium on Security
and Privacy, pages 244–256. IEEE, 2015.

[OHK19] Kento Oonishi, Xiaoxuan Huang, and Noboru Kunihiro. Improved CRT–RSA
secret key recovery method from sliding window leakage. In International
Conference on Information and Communications Security, volume 11975 of
Lecture Notes in Computer Science, pages 278–296, 2019.

[OK19] Kento Oonishi and Noboru Kunihiro. Attacking noisy secret CRT–RSA
exponents in binary method. In International Conference on Information
and Communications Security, volume 11396 of Lecture Notes in Computer
Science, pages 37–54, 2019.

[OK20] Kento Oonishi and Noboru Kunihiro. Recovering CRT–RSA secret keys
from noisy square-and-multiply sequences in the sliding window method. In
Australasian Conference on Information Security and Privacy, volume 12248
of Lecture Notes in Computer Science, pages 642–652. Springer, 2020.

[PCBP21] Guilherme Perin, Łukasz Chmielewski, Lejla Batina, and Stjepan Picek. Keep
it unsupervised: Horizontal attacks meet deep learning. IACR Transactions
on Cryptographic Hardware and Embedded Systems (TCHES), pages 343–372,
2021.

[PITM14] Guilherme Perin, Laurent Imbert, Lionel Torres, and Philippe Maurine.
Attacking randomized exponentiations using unsupervised learning. In Inter-
national Workshop on Constructive Side-Channel Analysis and Secure Design,
volume 8622 of Lecture Notes in Computer Science, pages 144–160, 2014.

[PPS12] Kenneth G. Paterson, Antigoni Polychroniadou, and Dale L. Sibborn. A
coding-theoretic approach to recovering noisy RSA keys. In Advances in
Cryptology—ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer
Seience, pages 386–403, 2012.

[Sch15] Werner Schindler. Exclusive exponent blinding may not suffice to prevent
timing attacks on RSA. In International Workshop on Cryptographic Hardware
and Embedded Systems, volume 9293 of Lecture Notes in Computer Science,
pages 229–247. Springer, 2015.

[SI11] Werner Schindler and Koichi Itoh. Exponent blinding does not always lift
(partial) Spa resistance to higher-level security. In International Conference
on Applied Cryptography and Network Security (ACNS), volume 6715 of
Lecture Notes in Computer Science, pages 73–90. Springer, 2011.

[SIUH22] Kotaro Saito, Akira Ito, Rei Ueno, and Naofumi Homma. One truth prevails:
A deep-learning based single-trace power analysis on RSA–CRT with win-
dowed exponentiation. IACR Transactions on Cryptographic Hardware and
Embedded Systems (TCHES), pages 490–526, 2022.

[SM09] Santanu Sarkar and Subhamoy Maitra. Partial key exposure attack on CRT–
RSA. In International Conference on Applied Cryptography and Network
Security (ACNS), volume 5536 of Lecture Notes in Computer Science, pages
473–484. Springer, 2009.

[SSS15] Takeshi Sugawara, Daisuke Suzuki, and Minoru Saeki. Two operands of
multipliers in side-channel attack. In International Workshop on Constructive
Side-Channel Analysis and Secure Design, volume 9064 of Lecture Notes in
Computer Science, pages 64–78, 2015.

Rei Ueno and Naofumi Homma 269

[SW14] Werner Schindler and Andreas Wiemers. Power attacks in the presence of
exponent blinding. Journal of Cryptographic Engineering, 4:213–236, 2014.

[SW17] Werner Schindler and Andreas Wiemers. Generic power attacks on RSA
with CRT and exponent blinding: new results. Journal of Cryptographic
Engineering, 7:255–272, 2017.

[TK14] Atsushi Takayasu and Noboru Kunihiro. Partial key exposure attack on RSA:
Achieving the Boneh–Durfee bound. In Selected Areas in Cryptography—SAC
2014, volume 8781 of Lecture Notes in Computer Science, pages 345–362,
2014.

[UTHH21] Rei Ueno, Junko Takahashi, Yu-ichi Hayashi, and Naofumi Homma. A method
for constructing sliding windows leak from noisy cache timing information.
Journal of Cryptographic Engineering, 11:161–170, 2021.

[vV18] Christine van Vredendaal. Exploiting mathematical structure in cryptography.
PhD thesis, Eindhoven University of Technology, 2018.

[Wal08] C.D. Walter. Sliding windows succumbs to big mac attack. In International
Workshop on Cryptographic Hardware and Embedded Systems, volume 2162
of Lecture Notes in Computer Science, pages 286–299. Springer, 2008.

[Yar18] Yuval Yarom. Mastik: A micro-architectural side-channel toolkit. https:
//cs.adelaide.edu.au/~yval/Mastik/, Oct 2018.

[YF14] Yuval Yarom and Katrina Falkner. Flush+Reload: A high resolution, low
noise, L3 cache side-channel attack. In 23rd USENIX Security Symposium,
2014.

[YGH18] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A timing
attack on OpenSSL constant-time RSA. Journal of Cryptographic Engineering,
8(1):1–27, 2018.

[ZvdPYS22] Yuanyuan Zhou, Joop van de Pol, Yu Yu, and François-Xavier Standaert. A
third is all you need: Extended partial key exposure attack on CRT–RSA with
additive exponent blinding. Cryptology ePrint Archive, Paper 2022/1163,
2022. https://eprint.iacr.org/2022/1163.

https://cs.adelaide.edu.au/~yval/Mastik/
https://cs.adelaide.edu.au/~yval/Mastik/
https://eprint.iacr.org/2022/1163

	Introduction
	Background
	Our contributions

	Preliminaries and Related Works
	RSA–CRT
	Sliding window exponentiation
	Access-driven cache attack on exponentiation
	Cache attack on RSA–CRT using sliding window
	Exponent blinding
	Partial key exposure attack

	Proposed Attack
	Overview
	Step (i): Estimation of S–M sequence using Flush+Reload
	Step (ii): Reversing partial bits of blinded exponents
	Step (iii): Estimation of random masks using modified Schindler–Wiemers continued fraction attack
	Step (iv): Recovery of exponent using extended Heninger–Shacham partial key exposure attack

	Evaluation
	Attack complexity
	Experimental validation and success rate evaluation
	Relation between implementation performance and mask bit length against proposed attack
	Discussion

	Conclusion

