
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 2, pp. 270–285. DOI:10.46586/tches.v2023.i2.270-285

Some New Methods to Generate Short Addition
Chains

Yuanchao Ding1,2,Hua Guo1,2,�,Yewei Guan1,3, Hutao Song1,3,
Xiyong Zhang4, Jianwei Liu1

1 School of Cyber Science and Technology, Beihang University, Beijing, China,
{dych21,hguo,ame_reiori,htsong,liujianwei}@buaa.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box, Beijing, China,

3 State Key Laboratory of Software Development Environment, Beihang University, Beijing,
China,

4 Beijing Institute of Satellite Information Engineering, Beijing, China,
Xiyong.Zhang@hotmail.com

Abstract. Modular exponentiation and scalar multiplication are important operations
in most public-key cryptosystems, and their efficient computation is essential to
cryptosystems. The shortest addition chain is one of the most important mathematical
concepts to realize the optimization of computation. However, finding a shortest
addition chain of length r is generally regarded as an NP-hard problem, whose time
complexity is comparable to O(r!). This paper proposes some novel methods to
generate short addition chains. We firstly present a Simplified Power-tree method
by deeply deleting the power-tree whose time complexity is reduced to O(r2). In
this paper, a Cross Window method and its variant are introduced by improving
the Window method. The Cross Window method uses the cross correlation to
deal with the windows and its pre-computation is optimized by a new Addition
Sequence Algorithm. The theoretical analysis is conducted to show the correctness
and effectiveness. Meanwhile, our experiments show that the new methods can obtain
shorter addition chains compared to the existing methods. The Cross Window method
with the Addition Sequence algorithm can attain 44.74% and 9.51% reduction of
the addition chain length, in the best case, compared to the Binary method and the
Window method respectively.
Keywords: addition chain · window method · simplified power-tree method · cross
window method · addition sequence

1 Introduction
Public-key cryptosystems are widely used in practice, but they are much slower than
symmetric cryptosystems. In the process of encryption and decryption, modular exponen-
tiation and scalar multiplication are the key factors impacting the efficiency. Common
public-key cryptosystems include DH, RSA, ElGamal, ECC, etc. Modular exponentiation
is used in DH, RSA and ElGamal, which is

y = xemod c. (1)

In ECC, scalar multiplication is used as

Q = eP. (2)

In these two operations, the representation of a positive integer e as a sequence of
doublings and additions is involved. In fact, the operations can be abstractly approached

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-10-15 Accepted: 2022-12-15 Published: 2023-03-06

https://doi.org/10.46586/tches.v2023.i2.270-285
mailto:dych21@buaa.edu.cn,hguo@buaa.edu.cn,ame_reiori@buaa.edu.cn,htsong@buaa.edu.cn,liujianwei@buaa.edu.cn
mailto:Xiyong.Zhang@hotmail.com
http://creativecommons.org/licenses/by/4.0/

Yuanchao Ding,Hua Guo,Yewei Guan, Hutao Song, Xiyong Zhang, Jianwei Liu 271

as an Addition Chain Problem (ACP) to find a shortest Addition Chain (AC). There are
different calculation paths to get e. For example, when e = 9, there are 1-2-4-8-9, 1-2-3-6-9,
..., etc. Such paths are called the addition chains of e.

Given a positive integer e, an addition chain A of e with length r is a sequence of
positive integers: A = a0, a1, a2, ..., ar, where a0 = 1, a1 = 2, ..., ar = e, and for all t ≥ 1,
there exist i and j such that t > i ≥ j and at = ai + aj . When i = j = t− 1, this step is
called doubling step (i.e. at = 2at−1). When i = t − 1, this step is called star step (i.e.
at = at−1 +aj , j < t). In this paper, n(e) = blog2 ec+1 indicates e is an n-bit integer. The
Hamming weight of e, defined to be the number of 1s in the binary form of e, is denoted
by h(e). The shortest possible length of addition chain for e is denoted by l(e).

In the practical public-key cryptosystems, the operands are usually selected with long
bits for security. For example, RSA uses 1024, 2048 or 4096 bit. The operations on large
integers are expensive. A shorter addition chain means faster execution of the corresponding
modular exponentiation or scalar multiplication, because there is a one-to-one relationship
between an element of the addition chain and the computation of modular exponentiation
or scalar multiplication. For example, when e = 9, the addition chain 1-2-4-8-9 corresponds
to x9 = ((x2)2)2x = x-x2-x4-x8-x9 or 9P = 2(2(2P)) + P = P -2P -4P -8P -9P . However,
ACP is generally regarded as an NP-hard problem[KY00, CRJC05, NMMZ17]. Therefore,
optimizating the search for a short addition chain to improve the execution speed of
modular exponentiation or scalar multiplication is helpful to improve the efficiency of
public-key cryptosystems.

At present, the methods of generating addition chain can be classified into two main
types. The first type [BA18, BK19, TC21], called minimal length addition chain(MLAC),
focuses on generating optimal addition chain, while the second one, called short addition
chain(SAC), aims to generate short addition chain. The length of generated chain in
the first type is minimal, which can well optimize the modular exponentiation and scalar
multiplication. However, as mentioned above, the running time increases rapidly. In the
second type, we can strike a balance between the length of generated chain and performance,
which is more practical. In this work, we will focus on the second type of methods.

For the second type, many methods have been proposed, such as the Binary method,
the m-ary (2k-ary) method [Bra39], the Window method [Knu14], the Power-tree method
[Knu14], the Genetic algorithm [CRJC05, VCR16], the Artificial Immune System [CRC08],
and the Evolutionary Programming [DMO15, PCJM18], etc. The Binary method is widely
used in fast modular exponentiation and scalar multiplication, which can be further
optimized. The m-ary method[Bra39] divides the binary form of integers into windows,
which are included in a pre-computation. Then it proceeds by scanning all the windows.
The Window method[Knu14] can achieve better results than m-ary method by looking
for the windows whose head and tail are non-zero, thus to reduce the pre-computation.
The Power-tree method[Knu14], the Genetic Algorithm[CRJC05, VCR16], the Artificial
Immune System[CRC08] and the Evolutionary Programming[DMO15, PCJM18] need
complex operations, which are suitable for relatively small integers until now. The
Window-based methods are feasible to solve large integers within a short time and have
been repeatedly optimized.

There are a number of analyses and improvements on the Window method [BC89,
KY98, KY00, AAF10, KAJK16], which are collectively called Window-based methods. In
1989, Bos and Coster[BC89] filled the pre-computation with addition sequences instead of
all odd numbers, supporting bigger window size and smaller length of chain. Kunihiro and
Yamamoto[KY98] further optimized the size of the pre-computation using Tunstall code.
In 2000, Kunihiro and Yamamoto[KY00] proposed the Run-length method, which worked
well when processing integers with large hamming weight. They also proposed the Hybrid
method, a hybrid of the Run-length method and the Window method. In 2010, Mohamed
et al.[AAF10] proposed an algorithm based on the Window method with small width by

272 Some New Methods to Generate Short Addition Chains

using 2’s Complements for finding addition-subtraction chain of 160-bit integers. In 2016,
Brian et al. [KAJK16] used the Window method to find addition chain of smooth isogeny
primes.

In this paper, we take into account some interesting observations about existing methods
and put forward our novel ideas. To obtain a shortest addition chain, the exhaustive
search of the Power-tree method is unpractical. We study the Binary method carefully
and find a “backward-adding” way to construct the addition chain with our simplified
power-tree, which deletes the nodes in power-tree substantially. For the Window method,
adjacent windows are usually adopted which has limited window combinations. We exploit
cross windows which diversify the window combinations and present our Cross Window
method for better results. In the pre-computation, a new Addition Sequence Algorithm
is presented to build a shorter pre-computation of the used windows, which leads to our
Cross Window method with the Addition Sequence Algorithm.

To sum up, the contributions of this paper are as follows:
1. Firstly, we present a Simplified Power-tree method by deeply deleting the power-tree,

whose time complexity is reduced from O(r!) to O(r2) .
2. Secondly, a Cross Window method is introduced by improving the Window method,

which achieves better result since more window combinations are handled by using cross
windows.

3. Thirdly, a Cross Window method with the Addition Sequence Algorithm is given to
optimize the pre-computation in the Cross Window method with using our new Addition
Sequence Algorithm, which attains 9.51% reduction of the addition chain length, in the
best case, compared to the Window method.

The remaining paper is structured as follows. Section 2 briefly reviews some general
existing methods. Section 3 shows a detailed description of our novel methods, including
the Simplified Power-tree method, the Cross Window method and the Cross Window
method with the Addition Sequence algorithm. We perform our experiments in Section 4,
which shows that our methods can obtain shorter addition chains compared to the existing
methods. Section 5 concludes the whole paper.

2 Existing methods

2.1 Binary Method
The Binary method (BM) uses binary representation of an integer, and an optional addition
is performed depending on whether a bit is 1 or 0. The general implementation of BM is
shown in Alg. 1 (from [NMMZ17]).

Algorithm 1 Binary Method
Input: e = (en−1...e1e0)2
Output: A = {a0, a1, a2, ..., ar = e}

1: A = {a0 = 1}, r = 1
2: for i from n− 2 down to 0 do
3: A = A ∪ {ar := 2ar−1}, r = r + 1
4: if ei = 1 then
5: A = A ∪ {ar := ar−1 + 1}, r = r + 1
6: end if
7: end for
8: return A

Yuanchao Ding,Hua Guo,Yewei Guan, Hutao Song, Xiyong Zhang, Jianwei Liu 273

2.2 Power-tree Method
The Power-tree method (PTM) means that all nodes are represented in the form of a
tree, and the nodes on the path are used as the addition chain of an integer. A complete
power-tree without duplicate nodes on any path is a tree that contains all possible results,
as shown in Fig. 1.

Figure 1: Power-tree.

The shortest addition chain of an integer can be determined by exhaustive search
within all paths, which takes a long time. Let the depth of node 1 be 0. The number of
subnodes of a node in depth r is not less than r + 1, and the total number of nodes in
depth r is greater than 1 · 2 · 3 · ... · r = r!.

2.3 Window Method
The idea of the Window method (WM) is to split the binary form of an integer into some
windows, then the windows are processed to get the addition chain through two parts:
pre-computation and construction. Let the window length be k. Pre-computation selects
all odd integers from 1 to 2k − 1, and 2, which is {1, 2, 3, 5, 7, ..., 2k − 1}, with length
2k−1 + 1.

In WM, for the binary form of an integer e, we read a window w (the bit-length of
w (denote as) n(w) ≤ k and MSB(w) = LSB(w) = 1, where MSB(w) and LSB(w)
indicate the most and the least significant bit of w respectively). As a result, w is
in the pre-computation. In construction, n(w) times doubling step and one time star
step are performed. For the consecutive 0s, doubling steps are directly conducted. The
implementation of WM is shown in Alg. 2.

3 New methods
In this section, we propose the Simplified Power-tree Method (SPTM), the Cross Window
method (CWM) and its variant the Cross Window method with the Addition Sequence
algorithm (CWM-ASA). The former improves PTM by deleting the power-tree. The latters
improve WM by using cross windows and optimizing the pre-computation.

3.1 Simplified Power-tree Method
We first give another view of BM. Instead of using an optional addition mixed in doubling
steps, we do the optional addition when all the doubling steps are done and the addition
number 1 is adjusted to corresponding numbers. This implementation of BM is Alg. 3.
This view of BM shows a feasible way to construct the addition chain, which leads to the
key point “backward-adding” of our Simplified Power-tree method (SPTM).

274 Some New Methods to Generate Short Addition Chains

Algorithm 2 Window Method
Input: k, e = (en−1...e1e0)2
Output: A = {a0, a1, a2, ..., e}

1: A = {1, 2, 3, 5, 7, ..., 2k − 1}
2: i = n− 1, r = 2k−1

3: find the longest bitstring eiei−1...ej such that i− j + 1 ≤ k and ej = 1
4: t = (eiei−1...ej)2, i = j − 1
5: while i ≥ 0 do
6: if ei = 0 then
7: A = A ∪ {ar := 2t}, r = r + 1, t = ar−1
8: else
9: find the longest bitstring eiei−1...ej such that i− j + 1 ≤ k and ej = 1

10: for t from i− j + 1 down to 1 do
11: A = A ∪ {ar := 2t}, r = r + 1, t = ar−1
12: end for
13: A = A ∪ {ar := t+ (eiei−1...ej)2}, r = r + 1, t = ar−1
14: i = j − 1
15: end if
16: end while
17: return A

Algorithm 3 Binary Method∗

Input: e = (en−1...e1e0)2
Output: A = {a0, a1, a2, ..., ar = e}

1: A = {1, 2, 4, ..., 2n−1}, r = n
2: for i from n− 2 down to 0 do
3: if ei = 1 then
4: A = A ∪ {ar := ar−1 + ai}, r = r + 1
5: end if
6: end for
7: return A

SPTM is proposed by subtly deleting tree nodes, which results in relatively small time
and space complexity. A simplified power-tree consists of root chain, main chain and branch
chains. The structure of the root chain is BM(m) where m is a base integer to build branch
chains, and the main chain is {2i|n(m) ≤ i ≤ t, 2t ≤ e < 2t+1}. For each node 2i in the
main chain, a branch chain follows as {2j(2i +m)|0 ≤ j ≤ t, 2t(2i +m) ≤ e < 2t+1(2i +m)}.
The structure of simplified power-tree is shown in Fig. 2.

Based on the simplified power-tree, the steps of constructing the addition chain of e
are as follows:

(1) Obtain an addition chain of e by BM(e) and record it as the result.
(2) Search the branch chains and update the recorded addition chain whenever a shorter

addition chain is found.
(3) Output the recorded addition chain.
More specifically in step (2), for the branch chain followed ci, the corresponding addition

chain of e is directly obtained if e is in the branch chain. Otherwise we form an initial chain
as BM(m) ∪ {2j |n(m) ≤ j ≤ i} ∪ {2j(2i +m)|0 ≤ j ≤ t, 2t(2i +m) ≤ e < 2t+1(2i +m)}
and do the “backward-adding”: whenever the newest integer in current chain adding the
node backward in the initial chain is less than e, do the adding and append the adding
result in current chain. Each branch chain can get an addition chain of e, as proved in

Yuanchao Ding,Hua Guo,Yewei Guan, Hutao Song, Xiyong Zhang, Jianwei Liu 275

Figure 2: Simplified power-tree.

Theorem 1. Then we search all chains and update the recorded addition chain whenever
we get a shorter addition chain. The implementation of SPTM is shown in Alg. 4.

Theorem 1: For any given positive integer, SPTM can produce an addition chain.
Proof: For the main chain, an addition chain of e is generated by BM. For the

branch chain followed ci, let e = t(ci + m) + C, where 0 ≤ C < ci + m. In fact, it has
0 ≤ C < 2ci − 1 because m < 2n(m) ≤ ci. Let x = ci +m. The branch chain contains the
construction of {x, 2x, 4x, ...}, which can obtain tx based on BM. That is, according to
the addition chain BM(t) = {a0, a1, a2, ..., t}, we obtain BMx(tx) = {a0x, a1x, a2x, ..., tx}.
The main chain and the root chain contain {1, 2, 4, ..., ci}, which can construct any integer
from 1 to 2ci− 1 by BM, including C by BM(C). As a result, using the “backward-adding”
, each branch chain can generate an addition chain of e.

Theorem 2: Let lSPTM be the length of addition chain obtained by SPTM. The range
of lSPTM is

n(e) + 2
√
h(e)− 3 ≤ lSPTM ≤ n(e) + h(e)− 2. (3)

Proof: In the worst case, all the branch chains cannot get a shorter chain than BM(e).
The method degenerates to BM, and the length is n(e) + h(e)− 2.

In the best case, all 1s in the binary form of e are divided into identical form of
2i +m (denote by w), and h(e) can be factorized into h(w) · h(e)

h(w) . For the first window
w, the length is n(w) + h(w) − 2. The other h(e)

h(w) − 1 windows give rise to a total of
h(e)
h(w) − 1 star steps and n(e) − n(w) doubling steps. Thus the addition chain length is
n(w) + h(w)− 2 + h(e)

h(w) − 1 + n(e)− n(w) = n(e) + h(w) + h(e)
h(w) − 3 ≥ n(e) + 2

√
h(e)− 3,

equality holds if and only if h(w) =
√
h(e).

3.2 Cross Window Method
The Window method (WM) only considers the adjacent correlation which means that each
window is divided sequentially. In practice, there are windows with cross correlation which
means there is a cross relationship between the windows. Using cross windows can achieve

276 Some New Methods to Generate Short Addition Chains

Algorithm 4 Simplified Power-tree Method
Input: m,e
Output: A = {a0, a1, a2, ..., e}

1: A = BM(e)
2: for i from n(m) to n(e)− 1 do
3: T = BM(m) ∪ {2n(m), 2n(m)+1, ..., 2i, 2i +m}, r = length(T)− 1
4: while tr < e do
5: r = r + 1, T = T ∪ {tr := 2tr−1}
6: end while
7: if tr = e and r < length(A) then
8: A = T
9: else

10: for j from r − 1 down to 0 do
11: if tr = e and r < length(A) then
12: A = T
13: end if
14: if tr + tj < e then
15: r = r + 1, T = T ∪ {tr := tr−1 + tj}
16: end if
17: end for
18: end if
19: end for
20: return A

a better result in somes cases. For example, for the integer (1011111)2, it only needs 2
star steps using cross windows, which is less than the result using adjacent windows, as
shown in Fig. 3 and Fig. 4.

Figure 3: Example of adjacent correlation. Figure 4: Example of cross correlation.

The Cross Window method (CWM) is to deal with the cross windows. CWM has two
parameters: valid window length k and interval expansion length s. CWM has two parts,
same as WM: pre-computation and construction. In pre-computation, the valid length k is
divided into two parts: the length of the right part R = dk/2e, and the length of the left
part L = k −R ≤ R.

When s ≥ 1, the pre-computation of CWM is obtained by inserting interval zeros
between the left and right parts of the pre-computation of WM. The general binary structure
is (a)2||0s||(b)2, a ∈ {1, 2, 3, ..., 2L − 1}, b ∈ {1, 3, 5, 7, ..., 2R − 1}, which is performed
specifically as follows:

(1) Get all odd numbers from 1 to 2R − 1, and 2.
(2) Get the interval expansion numbers, which are 2R, 2R+1, ..., 2R+s.
(3) Combine all numbers from 1 to 2L− 1 with the interval expansion and the numbers

in step (1).
Finally, the pre-computation (s ≥ 1) is {1, 2, 3, ..., 2R − 1; 2R, 2R+1, ..., 2R+s; 2R+s +

1, 2R+s + 3, ..., 2R+s + 2R − 1; 2 ∗ 2R+s + 1, 2 ∗ 2R+s + 3, ..., 2 ∗ 2R+s + 2R − 1; ...; (2L − 1) ∗
2R+s + 1, (2L − 1) ∗ 2R+s + 3, ..., (2L − 1) ∗ 2R+s + 2R − 1}, as shown by binary form in

Yuanchao Ding,Hua Guo,Yewei Guan, Hutao Song, Xiyong Zhang, Jianwei Liu 277

Fig. 5.
The lengths in step (1),(2) and (3) are 2R−1 + 1, s+ 1 and (2L − 1)2R−1. The total

length is 2k−1 + s+ 2.

Figure 5: The pre-computation of CWM by binary form.

When the interval expansion is not carried out (i.e. s = 0), CWM degenerates to
WM. In this case, step (2) should be removed. Thus the pre-computation (s = 0) is
{1, 2, 3, 5, 7, ..., 2k − 1}, with length 2k−1 + 1, same as WM. It is unnecessary to divide the
valid length k. For consistency, let R = 0.

In the construction of CWM, for the binary form of e, we read a window w (where
n(w) ≤ k + s and MSB(w) = LSB(w) = 1). If n(w) > s + R, the interval expansion
positions of the window are set to 0s. If R < n(w) < s+R, reset w as its first R bits with
removing the tail 0s. If n(w) < R, do nothing. As a result, w is in the pre-computation.
Then an operation 	 is performed. y 	 x is to align the highest non-zero bit of y with
the highest non-zero bit of x and execute a subtraction. A concrete example is listed by
binary form in Fig. 6.

Figure 6: An example of the process of CWM (L = R = s = 3).

For e = (11111011100011001101001)2, the first window is processed as w0 = (111000111)2,
then do e = e 	 w0 = (00011000000011001101001)2. Repeat this for w1 = (11)2, w2 =
(11000101)2 and w3 = (1000001)2. Finally, e is zero. From the above example, it is easy
to find that w1 is embedded in w0 as (111110111)2. As a result, it cannot construct the
addition chain like WM. To solve this problem, we record all the windows at corresponding
locations and construct the addition chain from the recorded windows. That is, do doubling
steps bit-by-bit from the first recorded window and add the window at each recorded
position. The implementation of CWM is shown in Alg. 5.

Theorem 3: Let lCWM be the length of addition chain obtained by CWM. The range
of lCWM is

n(e) + 2
√
h(e)− 3 ≤ lCWM ≤ n(e) + h(e)− 2. (4)

Proof: In the worst case, the position of 1s cannot form any window with length
longer than 1, which degenerates to BM, and the length is n(e) + h(e)− 2.

In the best case, like SPTM, all 1s are divided into several identical windows w, and
the addition chain length is n(e) + h(w) + h(e)

h(w) − 3 ≥ n(e) + 2
√
h(e)− 3, equality holds if

and only if h(w) =
√
h(e).

278 Some New Methods to Generate Short Addition Chains

Algorithm 5 Cross Window Method
Input: k, s, e = (en−1...e1e0)2
Output: A = {a0, a1, a2, ..., e}

1: if s ≥ 1 then
2: A = pre-computation(s ≥ 1), R = dk/2e
3: else
4: A = pre-computation(s = 0), R = 0
5: end if
6: t = k + s, i = n− 1,M = {0, 0, ..., 0︸ ︷︷ ︸

n

}

7: while i ≥ 0 do
8: if ei = 0 then
9: i = i− 1

10: else
11: find the longest bitstring eiei−1...ej such that i− j + 1 ≤ t and ej = 1
12: if i− j + 1 > s+R then
13: w = (eiei−1...ei−R+1 00...00︸ ︷︷ ︸

s

ei−R−s+1ei−R−s...ej)2, c = i− j + 1− s−R

14: end if
15: if R < i− j + 1 < s+R then
16: find the longest bitstring eiei−1...ej such that i− j + 1 ≤ R and ej = 1
17: w = (eiei−1...ej)2, c = i− j + 1
18: end if
19: e = e -©w,Mj = w, i = i− c
20: end if
21: end while
22: find the maximal j such that Mj 6= 0
23: r = length(A), t = Mj , j = j − 1
24: while j ≥ 0 do
25: A = A ∪ {ar := 2t}, r = r + 1, t = ar−1
26: if Mj 6= 0 then
27: A = A ∪ {ar := t+Mj}, r = r + 1, t = ar−1
28: end if
29: j = j − 1
30: end while
31: return A

Theorem 4: In general, let the number of recorded windows be v, the length of
pre-computation be 2k−1 + s+ 1 + β (β = 0 if s = 0 otherwise β = 1), and let the first
window be w0, the addition chain length obtained by CWM is

lCWM = 2k−1 + s+ β + n(e)− n(w0) + v. (5)

Proof: In CWM, we first construct the pre-computation. The length of pre-computation
is 2k−1+s+2 if s ≥ 1 otherwise is 2k−1+1, i.e. 2k−1+s+1+β where β = 0 if s = 0 otherwise
β = 1. Then perform n− n(w0) times doubling step repeatedly and v − 1 times star step
for recorded windows except the first window. Thus the addition chain length obtained by
CWM is lCWM = 2k−1 + s+ 1 +β+n(e)−n(w0) +v−1 = 2k−1 + s+β+n(e)−n(w0) +v.

3.3 Cross Window Method with Addition Sequence Algorithm
The pre-computation of CWM can be optimized since some integers in the pre-computation
may not be used as a window. In this paper, a new Addition Sequence Algorithm (ASA)

Yuanchao Ding,Hua Guo,Yewei Guan, Hutao Song, Xiyong Zhang, Jianwei Liu 279

is presented to construct a short pre-computation of the used windows. Addition Sequence
(AS) refers to the shortest addition chain containing given multiple integers, which is an
NP-complete problem. However, AS is solvable in CWM, since only the pre-computation
is involved which contains small integers. When we obtain a shorter pre-computation, we
can also use larger valid window length and interval expansion length and are possible to
obtain shorter addition chain.

Now we give a pragmatic ASA, which can find a short addition chain containing all
the used windows quickly. For an increasing order sequence A = {e0, e1, ..., ed−1}, let
the last two numbers be x, y(y > x) and let y = tx + C(0 ≤ C < x). For tx, we get
BMx(tx) = {a0x, a1x, a2x, ..., tx} and put it in A by increasing order. We put C in A by
increasing order if it is not in A and is non-zero. Thus the addition chain from x to y
is formed. Repeat the above steps for the following two numbers in A in reverse order
until all integers in A are solved. Finally, an addition chain containing e0, e1, ..., ed−1 is
obtained. The implementation of ASA is shown in Alg. 6.

Algorithm 6 Addition Sequence Algorithm
Input: A = {e0, e1, ..., ed−1}
Output: an addition chain containing all integers in A

1: arrange A in increasing order
2: add 1, 2 into A in increasing order if they are not in A
3: j = length(A)− 1
4: while j > 1 do
5: y = aj , x = aj−1, y = tx+ C(0 ≤ C < x)
6: add BMx(tx) into A in increasing order
7: if C 6= 0 and C 6∈ A then
8: add C into A in increasing order
9: j = j + 1

10: end if
11: j = j − 1
12: end while
13: return A

When the result of ASA is shorter than the original pre-computation in CWM (satisfied
in most cases, but not absolutely), the original pre-computation will be replaced. CWM
with ASA (CWM-ASA) is implemented in Alg. 7.

Algorithm 7 Cross Window method with the Addition Sequence Algorithm
Input: k,s,e
Output: A = {a0, a1, a2, ..., e}

1: A = CWM(k, s, e), let all the windows used be a sequence N
2: ASA-chain = ASA(N)
3: if length(ASA-chain) < length(pre-computation) then
4: replace the pre-computation in A with ASA-chain
5: end if
6: return A

Theorem 5: Let lCWM-ASA be the length of addition chain obtained by CWM-ASA,
the range of lCWM-ASA is the same as lCWM , which is

n(e) + 2
√
h(e)− 3 ≤ lCWM-ASA ≤ n(e) + h(e)− 2. (6)

Proof: The difference between CWM-ASA and CWM is the pre-computation. The

280 Some New Methods to Generate Short Addition Chains

lower bound of the pre-computation length in CWM-ASA is exactly the pre-computation
length in CWM, thus the range of lCWM-ASA is the same as lCWM .

Theorem 6: In general, let the number of recorded windows be v, the length of
pre-computation be u, and the first window be w0, the addition chain length obtained by
CWM-ASA is

lCWM-ASA = u+ n(e)− n(w0) + v − 1. (7)

Proof: In CWM-ASA, we first construct the pre-computation with length u and then
perform n− n(w0) times doubling step repeatedly and (v − 1) times star step for recorded
windows except the first window. Thus the addition chain length obtained by CWM-ASA
is lCWM-ASA = u+ n(e)− n(w0) + v − 1.

4 Numerical Results
In this section, we implement BM, WM, SPTM, CWM and CWM-ASA and the performance
are compared. We firstly show the performance of these methods on small integers with
l ≤ 22. Then a general case is conducted with the integers generated randomly with different
Hamming weight. Moreover, the integers of effective types of SPTM are exhibited to
indicate the irreplaceable advantages of SPTM in some cases. The parameters are selected
as: WM: 1 ≤ k ≤ 20; SPTM: 1 ≤ m ≤ 63 and m is odd; CWM: 1 ≤ k ≤ 10, 0 ≤ s ≤ 10;
CWM-ASA: 1 ≤ k ≤ 20, 0 ≤ s ≤ 20. The final result for an integer of a method is the
shortest addition chain length within the parameter range.

4.1 The Integers with l ≤ 22
For 365634 positive integers with l ≤ 22 [Cli], the results of BM, WM, SPTM, CWM and
CWM-ASA are shown in Table 1.

Table 1: Results of all integers with l ≤ 22.

Gap with the
shortest

BM WM SPTM CWM CWM-ASA
count prop. count prop. count prop. count prop. count prop.

0 7880 0.0216 46193 0.1263 68586 0.1876 86565 0.2368 228805 0.6258
1 31480 0.0861 150463 0.4115 187621 0.5131 185261 0.5067 131440 0.3595
2 66045 0.1806 127654 0.3491 100286 0.2743 83943 0.2296 5379 0.0147
3 81569 0.2231 37075 0.1014 9051 0.0248 9597 0.0262 10 2.7E-5
4 74605 0.2040 4231 0.0116 90 0.0002 267 0.0007 0 0.0000
5 59299 0.1622 18 4.9E-5 0 0.0000 1 3.0E-6 0 0.0000
6 26668 0.0729 0 0.0000 0 0.0000 0 0.0000 0 0.0000
7 13672 0.0374 0 0.0000 0 0.0000 0 0.0000 0 0.0000
8 3334 0.0091 0 0.0000 0 0.0000 0 0.0000 0 0.0000
9 893 0.0024 0 0.0000 0 0.0000 0 0.0000 0 0.0000
10 136 0.0004 0 0.0000 0 0.0000 0 0.0000 0 0.0000
11 52 0.0001 0 0.0000 0 0.0000 0 0.0000 0 0.0000
12 1 3.0E-6 0 0.0000 0 0.0000 0 0.0000 0 0.0000

AVG 3.5433 1.4605 1.1369 1.0475 0.3890

In this range, from the first row, we can see the optimal results proportions of BM,
WM, SPTM, CWM and CWM-ASA are 2.16%, 12.63%, 18.76%, 23.68% and 62.58%

Yuanchao Ding,Hua Guo,Yewei Guan, Hutao Song, Xiyong Zhang, Jianwei Liu 281

respectively, and from the last row the average gap with the shortest is 3.5433, 1.4605,
1.1369, 1.0475, and 0.3890 respectively. The results of SPTM, CWM and CWM-ASA are
better than those of BM and WM, and are more concentrated on the part with smaller
gap. CWM-ASA has the best results, and the optimal and suboptimal (the gap with the
shortest is 1) results account for 98.53%.

4.2 The Integers Generated Randomly with Different Hamming Weight
Let p = Hamming weight

bit-length , which means the bit 1 occurs with the probability of p. Select
bit-length as 160, 384, 512, 1024, 2048, 4096 and p as 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9. Set 50
integers for each combination. The average addition chain lengths are shown in Table 2 by
bit-length.

Table 2: Average addition chain lengths of random integers by bit-length.

Len/bit BM WM SPTM CWM CWM-ASA
160 238.15 192.37 210.15 191.93 187.89
384 574.87 452.64 513.37 452.14 445.27
512 766.47 600.18 688.10 599.64 590.71
1024 1534.46 1182.50 1388.86 1181.94 1166.94
2048 3070.68 2335.35 2793.60 2334.88 2307.24
4096 6139.43 4620.42 5610.92 4619.92 4567.07

In the random case, for each bit-length, the results obtained by SPTM is greater than
WM, which shows that SPTM is not effective in this case. The results obtained by CWM
and CWM-ASA are better compared to WM, and the chain length obtained by CWM-ASA
is relatively short. Fig. 7 shows the chain length optimization degree of CWM-ASA
compared with WM.

Figure 7: Chain length optimization degree of CWM-ASA compared with WM.

When p ≤ 0.5, the optimization degree generally declines with the increasing of p, and
the overall optimization degree is relatively low; when p = 0.5, the optimization degree is
approximately the lowest; when p ≥ 0.5, the optimization degree generally increases with
the increasing of p, and the overall optimization degree is relatively high.

For the bit-length, with the increasing of the bit-length, the optimization degree of
CWM-ASA declines. This is because the corresponding extra times doubling step are

282 Some New Methods to Generate Short Addition Chains

unavoidably brought in with the increasing of the bit-length, so that the overall cardinality
becomes larger.

In addition, the numbers with larger Hamming weight (p = 0.95) are tested, as shown in
Table 3. For p = 0.95, the average optimization degree of CWM-ASA is 43.11% compared
with BM. When the bit-length is 4096, the average addition chain length obtained by BM
is 7988.70, while CWM-ASA is 4414.82, and the optimization degree reaches 44.74%. The
average optimization degree of CWM-ASA is 7.89% compared with WM. When the length
is 160 bit, the average addition chain length obtained by WM is 202.06, while CWM-ASA
is 182.84, and the optimization degree reaches 9.51%.

Table 3: Comparison of CWM-ASA and BM, WM when p = 0.95.

Len/bit BM WM CWM-ASA optimization
(CWM-ASA & BM)

optimization
(CWM-ASA & WM)

160 310.32 202.06 182.84 41.08% 9.51%
384 746.76 470.42 430.36 42.37% 8.52%
512 997.14 622.04 569.98 42.84% 8.37%
1024 1994.92 1218.78 1126.40 43.54% 7.58%
2048 3989.96 2394.72 2230.84 44.09% 6.84%
4096 7988.70 4724.02 4414.82 44.74% 6.55%

4.3 The Integers of Effective Types for SPTM
SPTM is effective to the integers which have windows whose higest bit are followed by a
long series of 0s and the rest of the windows. In this case, the length of the window is
so long that the pre-computations of WM and CWM are overwhelming. Without using
pre-computation, the result of SPTM is better.

The generation rules of test integers are as follows:
(1) Randomly select 4 ≤ k ≤ 6 and 40 ≤ s ≤ 60.
(2) The integers of k bits is generated randomly, and then one bit 1 and s 0s are set

ahead to form a window, and the window is copied to k + 1 copies.
(3) The positions of these windows are randomly generated, and the position distance

among the windows is not less than k. Then an integer is obtained from these windows
with removing the tail 0s.

The average test results are shown in Table 4.

Table 4: Average test results of effective types for SPTM.

Len/bit BM WM SPTM CWM CWM-ASA
160 167.10 166.24 163.28 165.48 165.34
384 395.52 393.34 388.74 392.60 392.42
512 523.38 521.30 516.70 520.60 520.44
1024 1035.12 1033.08 1028.64 1032.56 1032.44
2048 2059.10 2057.38 2052.62 2056.62 2056.54
4096 4107.90 4105.26 4100.78 4104.78 4104.76

In this case, the results obtained by SPTM are the best, and the results obtained
by CWM and CWM-ASA are also better than those obtained by WM. This shows that

Yuanchao Ding,Hua Guo,Yewei Guan, Hutao Song, Xiyong Zhang, Jianwei Liu 283

although SPTM is not suitable for the random integers, it can achieve the best results
among several methods for the windows having the higest bit followed by a considerable
number of 0s.

4.4 Computational Cost and Memory Usage
In SPTM, for any given positive integer e, because the main chain and branch chains
mainly contain doubling steps, their lengths are approximately equal to the bit-length of
e (i.e. O(log e)). The number of branch chains is also O(log e) and a total of O((log e)2)
additions are performed. Thus, the time complexity of SPTM is O((log e)2). The branch
chains are searched one-by-one and the recorded addition chain is constantly updated, so
that the space complexity is O(log e).

In CWM and CWM-ASA, the computational cost and memory usage mainly come
from the generation of the obtained addition chain. The computational cost and memory
usage of the pre-computation, the window locations and the chain obtained by ASA are
negligible, since they handle small integers as windows. The length of the obtained addition
chain is O(log e) and each element is generally added by a doubling step or a star step.
Thus, for CWM and CWM-ASA, the time complexity and the space complexity are all
O(log e).

We give an estimate of the memory usage of the proposed methods in Table 5. For
an addition chain of e, each element in the addition chain needs at most n(e) bits of
memory usage and the total memory usage is approximately (n(e))2 bits. SPTM needs
twice memory usage because SPTM stores the current chain and the recorded chain. The
proposed methods can be performed in a short time. SPTM can complete the computation
in 1 second when the bit-length of the target integer is less than 2048 and in several
seconds for the integers of 4096 bits. CWM and CWM-ASA only need several milliseconds
for computation, even for the integers of 4096 bits.

Table 5: Memory usage (in KiB) of the proposed methods.

Len/bit SPTM CWM CWM-ASA
160 6.25 3.13 3.13
384 36 18 18
512 64 32 32
1024 256 128 128
2048 1024 512 512
4096 4096 2048 2048

5 Conclusion
In this paper, we proposed a Simplified Power-tree method and a Cross Window method
with a new Addition Sequence algorithm. The Simplified Power-tree method constructs a
power-tree with deep deletion, which is more suitable when the windows have the highest
bit followed by a considerable number of 0s. The Cross Window method considers the
windows with cross relationship. The cross windows are processed by recording the window
positions for recovery. Furthermore, the pre-computation is optimized with the Addition
Sequence Algorithm. The Cross Window method is slightly better than the Window
method, and the Cross Window method with the Addition Sequence algorithm has a
better optimization, especially in the case of large Hamming weight. Roughly speaking,
the average optimization degree is 7-8%, and the best case is 9-10%.

284 Some New Methods to Generate Short Addition Chains

Acknowledgment
We would like to thank the anonymous reviewers for their helpful and constructive
comments. This paper is supported by the National Key R&D Program of China
(2021YFB2700200), Natural Science Foundation of Beijing Municipality (No. 4202037),
the National Natural Science Foundation of China (U21B2021, 61972018, 61932014).

References
[AAF10] Mohamed M. Abd-Eldayem, Ehab T. Alnfrawy, and Aly A. Fahmy. Addition-

subtraction chain for 160 bit integers by using 2’s complement. Egypt. Comput.
Sci. J., 34(5), 2010.

[BA18] Hatem M. Bahig and Khaled A. AbdElbari. A fast gpu-based hybrid algorithm
for addition chains. Clust. Comput., 21(4):2001–2011, 2018.

[BC89] Jurjen N. Bos and Matthijs J. Coster. Addition chain heuristics. In Gilles
Brassard, editor, Advances in Cryptology - CRYPTO ’89, 9th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, volume 435 of Lecture Notes in Computer Science, pages
400–407. Springer, 1989.

[BK19] Hazem M. Bahig and Yasser Kotb. An efficient multicore algorithm for minimal
length addition chains. Comput., 8(1):23, 2019.

[Bra39] Alfred Brauer. On addition chains. Bulletin of the American mathematical
Society, 45(10):736–739, 1939.

[Cli] N. Clift. Shortest addition chains. http://wwwhomes.uni-bielefeld.de/
achim/addition_chain.html.

[CRC08] Nareli Cruz Cortés, Francisco Rodríguez-Henríquez, and Carlos A. Coello
Coello. An artificial immune system heuristic for generating short addition
chains. IEEE Trans. Evol. Comput., 12(1):1–24, 2008.

[CRJC05] Nareli Cruz Cortés, Francisco Rodríguez-Henríquez, Raúl Juárez-Morales, and
Carlos A. Coello Coello. Finding optimal addition chains using a genetic
algorithm approach. In Computational Intelligence and Security, International
Conference, CIS 2005, Xi’an, China, December 15-19, 2005, Proceedings, Part
I, volume 3801 of Lecture Notes in Computer Science, pages 208–215. Springer,
2005.

[DMO15] Saúl Domínguez-Isidro, Efrén Mezura-Montes, and Luis Guillermo Osorio-
Hernández. Evolutionary programming for the length minimization of addition
chains. Eng. Appl. Artif. Intell., 37:125–134, 2015.

[KAJK16] Brian Koziel, Reza Azarderakhsh, David Jao, and Mehran Mozaffari Kermani.
On fast calculation of addition chains for isogeny-based cryptography. In
Kefei Chen, Dongdai Lin, and Moti Yung, editors, Information Security and
Cryptology - 12th International Conference, Inscrypt 2016, Beijing, China,
November 4-6, 2016, Revised Selected Papers, volume 10143 of Lecture Notes
in Computer Science, pages 323–342. Springer, 2016.

[Knu14] Donald E Knuth. Art of computer programming, volume 2: Seminumerical
algorithms. Addison-Wesley Professional, 2014.

http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html

Yuanchao Ding,Hua Guo,Yewei Guan, Hutao Song, Xiyong Zhang, Jianwei Liu 285

[KY98] Noboru Kunihiro and Hirosuke Yamamoto. Window and extended window
methods for addition chain and addition-subtraction chain. IEICE TRANS-
ACTIONS on Fundamentals of Electronics, Communications and Computer
Sciences, 81(1):72–81, 1998.

[KY00] Noboru Kunihiro and Hirosuke Yamamoto. New methods for generating short
addition chains. IEICE TRANSACTIONS on Fundamentals of Electronics,
Communications and Computer Sciences, 83(1):60–67, 2000.

[NMMZ17] Adamu M. Noma, Abdullah Muhammed, Mohamad Afendee Mohamed, and
Z. Ahmad Zulkarnain. A review on heuristics for addition chain problem:
Towards efficient public key cryptosystems. J. Comput. Sci., 13(8):275–289,
2017.

[PCJM18] Stjepan Picek, Carlos A. Coello Coello, Domagoj Jakobovic, and Nele Mentens.
Finding short and implementation-friendly addition chains with evolutionary
algorithms. J. Heuristics, 24(3):457–481, 2018.

[TC21] Edward G. Thurber and Neill Michael Clift. Addition chains, vector chains,
and efficient computation. Discret. Math., 344(2):112200, 2021.

[VCR16] Eduardo Vázquez-Fernández, Carlos Cadena, and David A. Reyes-Gomez.
A genetic algorithm with a mutation mechanism based on a gaussian and
uniform distribution to minimize addition chains for small exponents. In IEEE
Congress on Evolutionary Computation, CEC 2016, Vancouver, BC, Canada,
July 24-29, 2016, pages 935–940. IEEE, 2016.

	Introduction
	Existing methods
	Binary Method
	Power-tree Method
	Window Method

	New methods
	Simplified Power-tree Method
	Cross Window Method
	Cross Window Method with Addition Sequence Algorithm

	Numerical Results
	The Integers with l 22
	The Integers Generated Randomly with Different Hamming Weight
	The Integers of Effective Types for SPTM
	Computational Cost and Memory Usage

	Conclusion

