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Abstract.

In this work, we present the first fault injection analysis of the Number Theoretic
Transform (NTT). The NTT is an integral computation unit, widely used for polyno-
mial multiplication in several structured lattice-based key encapsulation mechanisms
(KEMs) and digital signature schemes. We identify a critical single fault vulnerability
in the NTT, which severely reduces the entropy of its output. This in turn enables
us to perform a wide-range of attacks applicable to lattice-based KEMs as well as
signature schemes. In particular, we demonstrate novel key recovery and message
recovery attacks targeting the key generation and encryption procedure of Kyber
KEM. We also propose novel existential forgery attacks targeting deterministic and
probabilistic signing procedure of Dilithium, followed by a novel verification bypass at-
tack targeting its verification procedure. All proposed exploits are demonstrated with
high success rate using electromagnetic fault injection on optimized implementations
of Kyber and Dilithium, from the open-source pgm4 library on the ARM Cortex-M4
microcontroller. We also demonstrate that our proposed attacks are capable of
bypassing concrete countermeasures against existing fault attacks on lattice-based
KEMs and signature schemes. We believe our work motivates the need for more
research towards development of countermeasures for the NTT against fault injection
attacks.

Keywords: Lattice-based cryptography - Electromagnetic Fault-Injection attack -
Number Theoretic Transform - Learning With Error - Kyber - Dilithium

1 Introduction

The NIST standardization process for post-quantum cryptography has finished its third
round, and provided a list of new public key schemes for new standardization [AACT22].
While implementation performance and theoretical security guarantees served as the main
criteria in the initial rounds, resistance against side-channel attacks (SCA) and fault
injection attacks (FIA) emerged as an important criterion in the final round, as also clearly
stated by NIST at several instances [AH21,RR21].
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Amongst the seven main finalists in third round for key encapsulation mechanisms
(KEMs) and digital signatures, five schemes base their security on hard problems over
structured lattices [AASAT20]. These schemes are particularly attractive for constrained
embedded devices, owing to their relatively small public key sizes and highly competitive
runtimes. They typically operate over polynomials in polynomial rings, and notably, poly-
nomial multiplication is one of the most computationally intensive operations in practical
implementations of these schemes. Among the several known techniques for polynomial mul-
tiplication such as the schoolbook multiplier, Toom-Cook [Too63] and Karatsuba [Kar63],
the Number Theoretic Transform (NTT) based polynomial multiplication [CT65] is one
of the most widely adopted techniques, owing to its superior run-time complexity and a
compact design. Over the years, there has been a sustained effort by the cryptographic
community to improve the performance of NTT for lattice-based schemes on a wide-range
of hardware and software platforms [RVM™'14, POG15,BKS19, ACCT22, CHK21]. As a
result, the use of NTT for polynomial multiplication yields the fastest implementation for
several lattice-based schemes. In particular, the NTT serves as a critical computational
kernel used in Kyber [ABD"20] and Dilithium [LDK™17], which were selected as the first
candidates for PQC standardization.

While the NTT provides significant implementation benefits, it also manipulates sen-
sitive variables, thereby serving as an attractive target for SCA and FIA. While the
side-channel resistance of the NTT has been studied by a number of works [PPM17a,PP19,
RPBC20], its susceptibility to fault injection attacks has not received much attention.
Given its widespread use in lattice-based schemes, this raises a critical question whether
the NTT or more importantly its implementations contain hidden vulnerabilities that can
be exploited through FIA to compromise the security of lattice-based schemes.

Our Contribution: In this work, we answer this question positively, by presenting
the first fault injection analysis of the NTT. Our work relies on a key observation that
zeroization of the twiddle constants significantly reduces the entropy in the NTT output,
which in turn severely impacts the security of lattice-based schemes. To analyze the
feasibility of such a fault, we perform a detailed study of the optimized implementations
of the NTT used in Kyber (representative of KEMs) and Dilithium (representative of
signature schemes) on the ARM Cortex-M4 microcontroller using electromagnetic fault
injection. We identified a critical fault vulnerability in their implementations, which
enables zeroization of all the twiddle constants using a single targeted fault. This enables
practical key/message recovery attacks on Kyber KEM and forgery attacks on Dilithium.
The proposed attacks are also shown to bypass most known fault countermeasures for
lattice-based KEMs and signature schemes. To the best of our knowledge, we present first
practical forgery attack on the probabilistic variant! and verification bypass attack on the
verification procedure of Dilithium.

Organization of the Paper

In Section 2, we provide a generic description of Kyber and Dilithium, and provide some
background about the NTT as well as related prior work. In Section 3, we show related
works about FA on Lattice-based cryptography and classify them. In Section 4, we describe
the identified vulnerability in the NTT, and a detailed analysis of the same over practical
implementations of the NTT in Kyber and Dilithium. In Sections 5 and 6, we demonstrate
exploitation of the identified vulnerability in Kyber and Dilithium respectively. In Section
7, we perform experimental validation of our attacks using EMFI on unprotected and
protected targets, followed by conclusion and mitigation in Section 8.

Hslam et al. [IMS*22] recently proposed a rowhammer based attack on deterministic and probabilistic
Dilithium but its final complexity still remains as 289, while we report a full break.
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2 Background

2.1 Notation

Let ¢ be a prime number, and the field of integers modulo ¢ be denoted as Z,. Schemes such
as Kyber and Dilithium operate over polynomials in polynomial rings. The polynomial ring
Zg4|z]/#(x) is denoted as R, where ¢(x) = 2™ +1 is a cyclotomic polynomial with n being a
power of 2. Polynomials in R, are denoted using regular font letters (i.e.) a € R,. The i*®
coefficient of a € R, is denoted as a; € Z,. For a € Ry, {o(a) denotes the largest absolute
value of a coefficient of a in Z;. A vector of polynomials in R, is denoted using bold
lower case letters (i.e.) a € R’; with £ > 1, and a matrix of polynomials in R, is denoted
using bold upper case letters (i.e.) A € RE*‘ with (k,£) > 1. The element A[][j] denotes
the polynomial in row ¢ and j of A € R’;”. Transpose of a matrix A is denoted as A”.
Multiplication of polynomials a,b € R, is denoted as ¢ = a - b € R,. Pointwise/Coefficient-
wise multiplication of two polynomials a,b € R, is denoted as ¢ = aob € R,, which means
that each of the coefficients of polynomial a¢ multiplies the coefficients of b with the same
index. We denote B as a byte array, where the i*" byte is denoted as B[i]. A bit-string is
denoted using regular lower case font letters (i.e.) m € {0,1}*. For a given element a (Z,
or R, or ngxé)’ its corresponding faulty value is denoted as a* and we utilize this notation
for description of our attacks. The NT'T representation of a polynomial a € R, is denoted
as a € Ry, and the same notation also applies to modules of higher dimension.

2.2 Number Theoretic Transform

The Number Theoretic Transform (NTT) is utilized as a building block for polynomial
multiplication operation in several structured lattice-based schemes. While schemes such
as Kyber and Dilithium were designed with NTT-friendly parameters to allow use of
NTT, other schemes such as Saber, NTRU and NTRU Prime were designed with NTT-
unfriendly parameters, thereby relying on other techniques such as Toom-Cook [Coo66]
and Karatsuba [Kar63] for polynomial multiplication. However, recent works such as
[ACC*21, CHK*21, ACC*22] have shown that NTT can be indeed be used in these
schemes, which also leads to significant improvement in performance over non-NTT based
approaches.

The NTT is simply a bijective mapping for a polynomial p € R, from a normal domain
into an alternative represetation p € R, in the NTT domain as follows:

n—1
hi= pi-wt (1)
=0

where j € [0,n — 1] and w is the n'" root of unity in the operating ring Z,.
The corresponding inverse operation named Inverse NTT (denoted as INTT) maps p
in the NTT domain back to p in the normal domain as follows:

n—1
1 . i
Pj:ﬁzpz"w ! (2)
=0

The use of NTT requires either the n*® root of unity (w) or 2n'™ root of unity (¢) in
the underlying ring Z, (4> = w), which can be ensured through appropriate choices for the
parameters (n,q). The powers of w and ¢ that are used within the NTT computation are
commonly referred to as twiddle constants. NTT based multiplication of two polynomials
a and b in R, is typically done as follows:

¢ = INTT(NTT(a) o NTT(b)). (3)
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The NTT over an n point sequence is performed using the well-known butterfly network,
which operates over several layers/stages. The atomic operation within the NTT computa-
tion is denoted as the butterfly operation. A butterfly operation takes as inputs (a,b) € Zg
and a twiddle constant w, and produces outputs (c,d) € Zg. There are two types of but-
terfly operations, which can be interchangeably used in the NTT/INTT: (1) Cooley-Tukey
(CT) butterfly [CT65] in Eqn.4 and (2) Gentleman-Sande (GS) butterfly [GS66] in Eqn.5.
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Figure 1: Data flow graphs of CT-butterfly based NTT for size n = 8.

An NTT/INTT of size n = 2* typically consists of k stages with each stage containing
n/2 butterfly operations. We refer to Fig.1 for the data-flow graph of a CT-butterfly based
NTT for an input sequence with length n = 8.

c=a-+b-w c=a+b

) d=(a—0b)- w, (5)

d=a—b-w,

The underlying integer ring Z, of Dilithium contains both w and 1, ensuring complete
factorization of (z™ + 1) into linear factors (degree 1). This enables to use a complete NTT
with k& = log,(n) stages. However, the ring Z, of Kyber only contains w, which implies
that (2™ 4+ 1) can only be factored into n/2 quadratic factors (degree 2). Thus, the last
stage of NTT/INTT in Kyber is skipped and the NTT output contains n/2 elements.
Thus, Kyber relies on the use of an incomplete NTT with k — 1 stages.

2.3 Kyber

Kyber is a Chosen-Ciphertext Attack (CCA) secure KEM based on the Module Learning
With Errors (M-LWE) problem. Computations are done over modules in dimension (k x k)
(i.e) RF*% where Ry = Zg[z]/(z™ + 1), ¢ = 3329 and n = 256. Kyber comes in three
security levels, Kyber512 (NIST Level 1), Kyber-768 (Level 3) and Kyber-1024 (Level
5) with £ = 2,3 and 4 respectively. The parameters ¢, n and the modular polynomial
¢(x) = 2™ +1 are chosen, so as to allow the use of the Number Theoretic Transform (NTT)
for polynomial multiplication in R,.

The CCA secure Kyber KEM contains in its core, a Chosen-Plaintext Attack (CPA)
secure PKE. We refer to Algorithm 1 for a simplified description of the key-generation and
encryption procedures of CPA secure PKE of Kyber. We do not describe the decryption
procedure, as it is not a target of our attacks. The function Sample;; samples from a
uniform distribution, Samplep samples from a binomial distribution; Expand expands a
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small seed into a uniformly random matrix in R’;Xk. The function Compress(u, d) lossily
compresses 1 € Zg into v € Zga with ¢ > 24 while Decompress(v, d) extrapolates v € Zga
into ' € Z,;. Both Compress and Decompress can also be applied over vectors, where the
function is simply computed in a component-wise fashion.

The CPA secure PKE is converted into a CCA secure KEM using the Fujisaki-Okamoto
transformation [FO99]. The CPA.Encrypt (resp. CPA.Decrypt) procedure is converted
into the encapsulation procedure CCA.Encaps procedure (resp. decapsulation procedure
CPA.Decaps). The encapsulation procedure (CCA.Encaps) uses the public key pk and
instantiates the CPA.Encrypt procedure to generate the ciphertext ct for an internally
generated message m. It also generates a corresponding session key K.

The decapsulation procedure (CPA.Decaps) uses the secret key sk to decrypt the
ciphertext ct into the message m, and re-encrypts the message to compute a new ciphertext
ct. Subsequently, ct is compared with ct, and if the comparison succeeds, a valid session
key K is generated. Otherwise, the ciphertext ct is considered invalid, and a random
session key K is generated. This enables to detect invalid ciphertexts, thereby offering
concrete theoretical security guarantees against chosen-ciphertext attacks. We refer the
reader to [ABD™20] for more details on CCA secure Kyber KEM.

Algorithm 1 CPA Secure Kyber PKE (Simplified)

1: procedure CPA.KeyGen

2: seed € B < Sampley; () > Generate uniform Seed 4
3 seedp € B < Sample() > Generate uniform Seedp
4 A =NTT(A) € RE** « Expand(seeds) > Expand seedy into A in NTT domain
5: s € R’; < Sampleg(seedp, coins) > Sample secret s using (Seedp, coins)
6 e € RE « Sampleg(seedp, coins,) > Sample error e using (Seedp, coins.)
7 8§ € RN+ NTT(s) > NTT(s)
8 éc R}~C +— NTT(e) >NTT(e)
9 thosqLe >t=A" s+ ein NTT domain

10: Return (pk = (seeda, t), sk = (8))
11: end procedure

12: procedure CPA.Encrypt(pk,m € {0,1}*%, seedr € {0,1}°)
13: A € RF*¥ « Expand(seed )

14: r € RF « Sampleg(seedr, coins) > Sample r using (Seedg, coinsg)
15: e; € R’; + Sampleg(seedg, coinsy) > Sample e; using (Seedg, coinsy)
16: ez € R} « Sampleg(seedr, coinssy) > Sample es using (Seedpg, coinss)
17: P e RE<+ NTT(r) > NTT(r)
18: ue RN INTT(AT o) + e; pu=AT r+e;
19: v € Ry« INTT(tT o £) + ez + Decompress(m,1) >v =1t -r+ ez + Encode(m)
20: Return ¢t = Compress(u, d; ), Compress(v, dz)

21: end procedure

2.4 Dilithium

Dilithium is a lattice-based digital signature scheme, whose security is based on the Module
LWE (M-LWE) and Module SIS (M-SIS) problem. Dilithium operates over the module
RE*C with (k, £) > 1 where Ry = Z[z]/(z™ +1), n = 256 and ¢ = 2?* — 213 — 1. This choice
of parameters allows the use of the NTT for polynomial multiplication in R,4. Dilithium also
comes in three security levels: Dilithium2 with (k,¢) = (4,4) at NIST Level 2, Dilithium3
with (k,¢) = (6,5) at NIST Level 3 and Dilithium5 with (k,¢) = (8,7) at NIST Level
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Algorithm 2 Dilithium Signature scheme (Simplified)

©
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: procedure KEYGEN

A € RF** + Expand(sced )

t=A- S1 + S2

(t1,to) + Power2Round(t)

tr € B < H(seed||t1)

: pk = (seeda,t1), sk = (seeda, K, tr,sy,82, to)
: end procedure

seed, seedg, K) € B + Sample;;(); s1,82 € (RY x RF) < Sampleg(seeds
U q q

> Generate LWE instance t
> Split t as t1 - 2% + to

: procedure SIGN(sk, M)
Ace R’;Xf < Expand(seed )

end if
while (z,h) = 1 do
y < Sampley (p||x)
¥ = NTT(y)
w <+ INTT(A oy); wy < HighBits(w)
c€ Ry H(yllw1)
¢=NTT(c)
z=INTT(¢o81)+y

Compute Hint Vector h
if Conditional Checks Not Satisfied then
(z,h) = L
k=r+1
end if
end while
o= (z,h,c)
end procedure

w € {0,1}512 « H(tr| M) > Hash m with public value tr
k< 0; (z,h) « L
if Deterministic then

p € R, H(K|p) > Generate seed p using message and secret seed K
else

pE Rg <+ Sampleg; () > Generate uniform seed p

> Start of Abort Loop

> NTT(y)
> w; = HighBits(A - y)
> Generate Sparse Challenge ¢

> NTT(c)

>z=81-Ccty

: procedure VERIFY (pk, M,o = (z,h,c))

w € {0, 13512 < H(tr|| M)

¢=NTT(c)

w’ := UseHint(h, A -z — INTT(é o ty - 2%, 25)

¢ =H(pu, wy)

if (¢ ==c¢) and (norm of z and h are valid) then
Return Pass

else
Return Fail

end if

: end procedure

> NTT(c)

5. There are two variants of Dilithium: (1) Deterministic (2) Probabilistic/Randomized,
which only subtly differ in the way randomness is used in the signing procedure. The
signing procedure of the deterministic Dilithium does not utilize external randomness and
can generate only a single signature for a given message. The randomized variant however
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utilizes external randomness and thus generates a different signature, for a given message
in each execution.

Refer Alg.2 for the key generation, signing and verification procedures of Dilithium.
The functions Sample;;, Samplep and Expand perform the same functions as in Kyber,
albeit with different parameters. Dilithium also uses a number of rounding functions such
as Power2Round, HighBits, LowBits, MakeHint and UseHint, whose details can be found in
[LDK*17]. The key generation procedure simply involves generation of an LWE instance
t (Line 4). Subsequently, the LWE instance is split into higher and lower order bits t
and tg respectively (Line 5), where t1 forms part of the public key, while to becomes part
of the secret key.

The signing procedure of Dilithium is based on the “Fiat-Shamir with Aborts” frame-
work where the signature is repeatedly generated and rejected until it satisfies a given set
of conditions [Lyu09]. The message m is first hashed with a public value ¢r to generate u
(Line 11). The abort loop (Line 18-31) starts by generating an ephemeral nonce y € Rf;,
using a seed p. For the deterministic variant, the seed p is obtained by hashing p with
a secret nonce K (Line 14), while the probabilistic variant randomly samples the seed p
from a uniform distribution (Line 16). This is the only differentiator between the two
variants. The nonce y along with the public key component A is then used to calculate a
sparse challenge polynomial ¢ € R, (Line 22), whose 60 coefficients are either 1, while
the other 196 coefficients are 0. Subsequently, the challenge ¢, nonce y and secret s,
are used to compute the primary signature component z (Line 24). Then, a hint vector
h is generated and output as part of the signature o. The abort loop contains several
conditional checks (Line 27), which should be simultaneously satisfied to terminate the
abort loop and generate the signature o = (z, h, ¢).

The verification procedure utilizes the signature ¢ and the public key pk to recompute
the challenge polynomial ¢ (Line 38), which is then compared with the received challenge
¢, along with other checks (Line 39). If all the checks are satisified, then the verification is
successful, else it is a failure.

3 Prior Works

In this section, we discuss existing works that explore vulnerability of lattice-based
KEMs and digital signature schemes against fault-injection attacks and corresponding
countermeasures.

3.1 Fault Attacks on Signature Schemes

With respect to signature schemes, we focus on attacks targeting the signing and verification
procedure, while attacks on the key-generation procedure are considered out of scope.

3.1.1 Targeting the Signing Procedure

We categorize attacks on the signing procedure into the following categories, depending on
the type of fault models and target operations.

1. Randomization Faults
2. Skipping Faults
3. Zeroization Faults

1.Randomization Faults: The attack involves injection of random faults to either (1)
corrupt targeted variables or (2) alter control flow of the signing procedure.
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(a) Randomize_ Secret_ Key Attack: Bindel et al. [BBK16] reported the first fault vulnerabil-
ity analysis of lattice-based signature schemes such as GLP [GLP12] and BLISS [DDLL13],
based on the "Fiat-Shamir with Aborts" framework. They proposed to inject random
faults to change a single or few coefficients of the secret module s; € Rf;. The attacker
can subsequently utilize the knowledge of a few hundred faulty signatures to fully recover
s1. Knowledge of s; alone is sufficient for an attacker to forge signatures of Dilithium, as
shown in [RJH*19,BP18].

Along the same lines, Islam et al. [IMST22] recently presented a novel signature cor-
rection attack, which also works by injecting random bit flips in single coefficients of the
secret module s1, stored in memory. They utilize Rowhammer as an attack vector to inject
random bit flips, and subsequently utilized a signature correction algorithm on the faulty
signatures to recover the secret key. We henceforth refer to these attacks faulting the
secret key as Randomize_ Secret Key fault attacks.

Countermeasure against Randomize_Secret_ Key attack: The faulty signatures generated
due to injection of randomization faults are invalid with an overwhelming probability.
Thus, verifying the validity of the generated signatures serves as a concrete countermeasure.
The countermeasure is also effective against any future fault attacks which produce invalid
signatures. We henceforth refer to this countermeasure as Verify After_ Sign countermea-
sure.

(b) Generic_ DFA Attack: Bruinderink and Pessl [BP18] presented a powerful Differential
Fault Attack (DFA), particularly applicable to the deterministic variant of Dilithium,
whose modus operandi is as follows: the attacker has access to a signing oracle, and submits
a signature query for a randomly chosen message m. Let the primary signature component
be z =s;1 - ¢+ y. The attacker then submits a signing query for the same message m, but
injects a random fault such that the corresponding faulty signature is z’ = s; - ¢ +y, which
is computed with the same nonce y, but with a different challenge polynomial ¢’. The
difference Az = z — 2z’ can be used to trivially recover the entire secret module s;, with
only a single faulty signature. The authors showed that a single random fault anywhere
within 68% of the execution time of the signing procedure can result in full key recovery,
thereby demonstrating the effectiveness of their attack. We henceforth refer to this attack
as the Generic_ DFA attack on Dilithium.

Countermeasure against Generic_ DFA attack: Similar to the Randomize_Secret Key at-
tack, Generic_ DFA attack also results in invalid signatures which do not pass verification.
Thus, the Verify_ After_ Sign countermeasure serves as a strong deterrent against the attack.
However, the authors of [BP18] also showed an interesting variant of their attack which
works by injecting faults during sampling of y, that results in valid signatures. Thus this
variant of their attack can bypass the Verify After_ Sign countermeasure.

2.Skipping Faults: This class of attacks work by injecting faults to skip targeted
instructions in the signing procedure.

(a) Loop_Abort Attack: Espitau et al. [EFGT16] presented a novel loop abort fault
attack on the signing procedure of BLISS, to prematurely abort the sampling of the nonce
y (equivalent to Line 19 in Alg.2). This results in generation of y with very low degree (i.e.)
with several zero coefficients. Utilization of such a sparse nonce y to generate signatures
leads to easy recovery of s, even with a single such faulty signature [EFGT16]. We refer
to this attack as the Loop_ Abort fault attack.

Countermeasure against Loop__Abort fault attack: The attack works by injecting faults in
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the value of y. Thus, the generated faulty signatures are valid. Thus, the attack can easily
bypass the Verify After_ Sign countermeasure. However, the attack can be mitigated using
implementation level countermeasures such as a loop counter, that keeps track of the
number of sampled coefficients of y. While one can argue that the countermeasure can
also be bypassed through faults, it is possible to design the countermeasure in a careful
manner, so as to avoid such trivial double fault injection attacks. The loop counter can
be implemented in the following manner. The number of coefficients of y € Rf; is (£-n).
We sample a random integer g € Z*. We initialize a loop counter Ic to 0 and its value is
increased by g for every sampled coefficient of y. Subsequently, the generated signature o
is stored in a temporary variable temp, and is copied one byte at a time to the output
variable sig (initialized with 0), only if the loop counter value is equal to the expected
value (£-n-g). This comparison is done for every byte moved from temp to sig. In essence,
the signature is passed onto the output, only if all the coefficients of y have been sampled.

Such use of a dynamic loop counter whose value changes for every execution (lc = £-n-g),
provides increased resistance against double fault attacks, which target the loop counter
protection. Injection of very precise faults to force successful comparison is challenging to
achieve in practice. Moreover, simply skipping the loop counter comparison results in a zero
signature (sig = 0), which is not useful for an attacker. We refer to this countermeasure
as the Verify__Loop_ Abort countermeasure.

(b) Skip__Addition Attack: Bindel et al. [BBK16] proposed theoretical skipping fault
attacks targeting the final addition operation used to generate z € Ré (Line 24 in Alg.2).
Skipping the addition of y € R’ with the product (s - ¢) € R}, unmasks the coefficients of
the product (s; - ¢), whose knowledge can be used to recover s;. While this is possible by
skipping the entire addition operation, Ravi et al. [RJHT19] proposed a more subtle fault
attack on the deterministic variant of Dilithium, which involves skipping of the addition
operation for single coefficients of z. An attacker can then use a DFA technique similar to
[BP18], to recover the secret module s; in only a few hundred such faulty signatures. We
refer to these attacks as the Skip_ Addition fault attacks.

Countermeasure against Skip__Addition attack: The dynamic loop counter protection
can be used to keep track of the number of addition operations to generate the primary
signature component z. However, the protection does not defeat attacks that skip addition
through corruption of underlying assembly instructions, that dont affect the loop counter.
In this respect, Ravi et al. [RJHT19] proposed to compute the addition operation in the
NTT domain (i.e.) compute z as INTT((s1 o &) +§). Thus, skipping fault in at least one
coefficient of z uniformly propagates the fault to all coefficients through the subsequent
INTT operation. This results in a invalid signature which is rejected by the conditional
check on ||z]|s with a very high probability (Line 27 in Alg.2). We refer to this combined
countermeasure of using a dynamic loop counter along with addition in the NTT domain
as the Verify_ Add countermeasure.

3.Zeroization Faults: Bindel et al. [BBK16] proposed theoretical fault attacks to zeroize
entire variables or a part of them to zero. They show that zeroizing the nonce y (Line 19)
as well as the challenge polynomial ¢ (Line 22) generates faulty signatures which easily
compromise the secret key. We refer to these attacks together as the Zero_ Fault attacks.
Though theoretically possible, such zeroization of entire polynomials/modules is not trivial
to achieve in practice, and the authors did not practically demonstrate such faults. We
refer to these attacks together as the Zero  Fault attacks.

Countermeasure against Zeroization attack: Zeroization of y through skipping faults,
can be protected using a well-designed loop counter protection, similar to that for the
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Verify__Loop__Abort countermeasure. On the other hand, zeroization of the challenge
polynomial ¢ in the signing procedure leads to invalid signatures, which can be detected
through the Verify_ After_ Sign countermeasure. Moreover, one can also explicitly check
for such zeroization of variables through dedicated checking procedures.

3.1.2 Targeting the Verification Procedure

Unlike the signing procedure, the verification procedure has received much lesser attention
with respect to fault injection attacks. However, bypassing the final verification operation
(Line 39 in the Verify procedure of Alg.2) serves as a clear target for the attacker, and
thus has to be protected. We are only aware of the work of Bindel et al. [BBK16], who
showed that zeroization of the challenge polynomial ¢ in the verification procedure, can
lead to successful verification of invalid signatures for any message, without knowledge
of the secret key. However, as stated earlier, such zeroization is not trivial to achieve in
practice. Moreover, to the best of our knowledge, there has not been any practical fault
injection attacks demonstrated on the verification procedure of Dilithium.

3.2 Fault Attacks on KEMs

We start by briefly describing application of Kyber KEM in a key-exchange protocol,
before explaining the known fault attacks applicable to Kyber KEM. Refer Fig.2 for an
example key-exchange protocol that can be built using IND-CCA secure Kyber KEM. The
protocol is executed between two parties - Alice and Bob.

Alice starts by running the key-generation procedure (KeyGen) to generate her public-
private key pair (pk, sk), and subsequently sends the public key pk to Bob. Bob then runs
the encapsulation procedure (Encaps) procedure with the public key pk to generate the
ciphertext ¢t and the session key K. Bob shares the ciphertext ¢t with Alice, who uses
her secret key sk to generate the same shared session key K. Alice can choose to reuse
the public-private key pair (pk, sk) for multiple key-exchanges and this is referred to as a
static-key setting. However, Alice can also choose to use fresh key pairs (pk, sk) for every
new key-exchange, which we refer to as the ephemeral-key setting. In this scenario, it
is sufficient to perform key-exchange using the IND-CPA secure Kyber PKE. Here, Bob
and Alice utilize the CPA.Encrypt and CPA.Decrypt procedures respectively, instead of
the CCA.Encaps and CCA.Decaps to run the key-exchange protocol in the ephemeral-key
setting.

If the fault attacker has physical access to Alice, he/she can target the key-generation
and/or decapsulation procedure. If the attacker has physical access to Bob, then he/she
can target the encapsulation procedure. In this work, we only consider attacks on the key-
generation and encapsulation procedure, and thus attacks on the decapsulation procedure
are considered out of scope.

3.2.1 Faulting the Key-Generation and Encryption/Encapsulation Procedure

The key-generation procedure is attractive for fault injection in an ephemeral setting,
since it is performed for every new key exchange by Alice. Injection of faults in the
key-generation procedure could lead to faulty public-keys that could easily compromise the
secret key. An attacker can also target the encapsulation procedure through fault injection
to produce faulty ciphertexts ct’, which can compromise the corresponding secret message
m. The encapsulation procedure is performed for every new key-exchange, and thus serves
as an attractive target for the attacker for message recovery attacks.

In this respect, Ravi et al. [RRBT19] proposed the first practical fault attack for
KEMs, targeting the key-generation and encryption procedure of schemes such as Ky-
ber, NewHope and Frodo. The attack targets byte sized nonces, which are used during
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Alice Bob

(pk, sk) < CCA.KeyGen

(ct, K) < CCA.Encaps(pk)

(K) « CCA.Decaps(ct, sk)

Figure 2: Key-Exchange protocol using IND-CCA secure Kyber KEM

sampling of secrets and errors to generate LWE instances. They demonstrate that a
single or few targeted faults can be used to force nonce reuse, which results in sampling
of the same/similar secrets and errors (s = e). This results in generation of weak LWE
instances in the key generation and encryption procedure, that leads to trivial key recovery
and message recovery attacks. We henceforth refer to this attack as the Nonce Fault attack.

Countermeasure against Nonce_Fault attack: It is possible to utilize a dedicated veri-
fication procedure, which checks for the equality of the polynomials of the secret and error
modules. Even if one of the polynomials of the secret/error is found to be equal, then the
key-generation or encapsulation procedure can be aborted. Moreover, this dedicated verifi-
cation procedure can be fortified with an additional loop counter protection so as to ensure
that the verification procedure is not bypassed using a double fault attack (refer Section
3.1.1). A valid public key is generated at the output, only if the verification procedure is
completed (successful loop counter check) and the verification procedure passes. On the
other hand, a random public-key or ciphertext is generated as the output if the verification
procedure is incomplete (failure in loop counter check) or the verification procedure fails.
We refer to this countermeasure as the Verify _Nonce Fault countermeasure.

3.2.2 Faulting the Decapsulation Procedure

To our knowledge, all remaining fault attacks applicable to lattice-based KEMs such as
Kyber target the decapsulation procedure, to recover the long-term secret key.

Pessl and Prokop proposed a novel fault-assisted chosen-ciphertext attack [PP21] on
Kyber KEM. Their attack works by injecting targeted faults in the message decoding
operation, and subsequently utilizing information about the success/failure of decapsulation,
as a decryption failure oracle. This information can be utilized by an attacker to recover
the long term secret key in a few thousand chosen-ciphertext queries. While this attack
can be thwarted by shuffling the message decoding operation, Hermelink et al. [HPP21]
proposed an improved attack that can defeat the shuffling protection, but relies on a
slightly stronger fault model of injecting targeted bit flip faults in memory. Delvaux [Del22]
further improved the attack of Hermelink et al. [HPP21] by expanding the attack surface
to several operations within the decapsulation procedure, while also working with a variety
of more relaxed fault models. However, their attack requires a tens to thousands of fault
to recover the secret key, as they rely on weaker and relaxed fault models.

Xagawa et al. [XIUT21] demonstrated that the obvious target of the final equality
check in the decapsulation procedure can be easily skipped in several lattice-based KEMs
such as Kyber KEM. The fault has the effect of downgrading the security of KEMs from
CCA security to CPA security, which results in key recovery in a chosen-ciphertext setting.
We do not delve deeper into attacks on the decapsulation procedure, as they are considered
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out of scope of this work.

In summary, please refer to Tab.1 for a tabulation of the fault attacks and corresponding
countermeasures for Kyber (key generation and encryption/encapsulation procedure) and
Dilithium (signing procedure).

Table 1: Tabulation of known fault attacks and countermeasures for the key generation
(KeyGen) and encapsulation (Encaps) procedure of Kyber KEM and signing procedure
(Sign) of Dilithium.

Attack Countermeasure

Kyber (KeyGen, Encaps)

Nonce Fault [RRBT19) Verify_Nonce Fault

Dilithium (Sign)

Randomize Secret Key [BBK16, Verify_ After_Sign
IMS*22]
Generic_DFA [BP1§] Verify_After_Sign
Loop_ Abort [EFGT16] Verify_Loop_ Abort
Skip_ Addition [BBK16, RJH*19) Verify Add
Zero_ Fault [BBK16] Verify_ After_ Sign,Verify_Loop_ Abort

3.2.3 Motivation

Our survey of fault attacks on KEMs and signature schemes reveal that existing attacks
are orthogonal in nature, with most attacks being specific either to KEMs or signature
schemes. In this respect, we identify the Number Theoretic Transform (NTT) as a
commonality, which is used in both lattice-based KEMs and signature schemes. It is a
critical computational kernel, especially used in both Kyber and Dilithium to accelerate
polynomial multiplication, and also manipulates sensitive intermediate variables including
secret keys. The NTT has been target of several side-channel attacks [PPM17a, PP19,
MBM*22 HHP*21]. The inherent properties of the NTT have also been exploited to
perform cold-boot attacks [ADP18], where the attacker attempts to recover the secret
key of LWE-based schemes from noisy versions of the key. However, there are no known
studies on understanding the vulnerability of NTT to fault injection attacks. Moreover, a
fault vulnerability exploiting the inherent nature of the NTT, if exists, can be potentially
used to exploit multiple post-quantum cryptographic schemes, which utilize NTT for fast
and efficient polynomial multiplication.

Given its widespread usage in several schemes, it becomes imperative to analyze its
susceptibility to FIA and identify suitable countermeasures for protection. Moreover,
the uniform structure of the NTT based on the "butterfly" network, makes it especially
interesting to analyze from the perspective of fault injection attacks. Thus in this work,
we perform the first fault injection analysis of the NTT, and analyze its applicability
to lattice-based schemes. We identify a critical vulnerability within the NTT operation,
which can be exploited in a variety of different open-source software implementations from
independent designers. Moreover, all our proposed attacks only require a single targeted
fault to be injected within the target procedure. Moreover, we also show that our attacks
can bypass most fault countermeasures against existing attacks on lattice-based KEMs
and signature schemes.
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4 Fault Vulnerability of NTT

4.1 Intuition

We start by analyzing a single CT butterfly operation (described in Eqn.4), commonly
used to implement the forward NTT. Its inputs are (xg, 1) € Zg, twiddle constant w, and
outputs are (yo,y1) = (o + 21 - w), (xg — x1 - w)). We consider the possibility of injecting
faults to zeroize the twiddle factor w. As a result, the faulty outputs of the butterfly are
(y5,93) = (wo, zo), with no effect of z; on the faulty output. We now extend the same
fault to all the butterflies in a single stage of NTT (Refer to Stage-1 of NTT in Fig.1). Let
the input to the stage be x; for i € [0,n — 1] and its output be y; for ¢ € [0,n — 1]. If all of
its twiddle constants are 0, then the output is given as:

Y — {xl, for i <.n/2 (6)
Ti—_(n/2), Otherwise

We observe that the entropy of the output is reduced by half. If we extend the same
fault to the entire NTT, then the final output of NTT Z is simply &; = xo Vi € [0,n — 1].
In essence, the entropy of the output is reduced by half for every stage, with the final
output only containing a single element xy repeated n times. Thus, zeroizing the twiddle
constants produces a faulty output with very low entropy. If this faulty NTT output is
utilized for polynomial multiplication with z € R, (i.e.) -z € Ry, then the faulty product
is z* - z € Ry where z* is given as,

i
xf:{mo’ ifi=0 M)

0, otherwise

Thus, faulting the NTT of x in this manner has the effect of implicitly changing x to x*
with low entropy, with only a single non-zero coefficient. While this applies for schemes
such as Dilithium which utilize a complete NTT, Kyber utilizes an incomplete NTT with
last stage skipped. The implicitly modified faulty input «* in case of Kyber KEM is given
as:

(®)

. x;, fori=1{0,1}

xr. =
0, otherwise

with two non-zero coefficients. Thus, the entropy of the faulty input x* depends upon
the number of stages in the NTT. While zeroization of all the twiddle constants comes
across as a strong assumption, we have identified a critical fault vulnerability in practical
implementations of NTT in several schemes, which enables zeroization of twiddle constants
with only a single targeted fault.

4.2 Analyzing Practical NTT Implementations

We utilize the optimized implementation of Kyber KEM from the pgm/ library for 32-
bit ARM Cortex-M4 based microcontrollers [KRSS19] for our analysis?. We compiled
our implementations using the arm-none-eabi-gcc compiler, with the highest compiler
optimization level -03. We analyzed the compiled assembly code using an On-Chip
Debugger to better understand the utilization of twiddle constants within the NTT/INTT
computation.

2Qur analysis and experiments were carried out on the NTT implementations of Kyber and Dilithium
corresponding to the commit hash cf6£358c05db8a4e416561801bb4920d05b3bbb1, and were available in
the pgm4 library until Jan 31, 2022. However, our attacks also apply in the same manner to the most
recent NT'T implementations in the pgm4 library.
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Algorithm 3 Assembly Optimized NTT of Kyber in pgm4 library [KRSS19] (Simplified)

. ldr rl, [pe, #4] > Loading twiddle-ptr from address (pc+4) to register rl

***Start of NTT Assembly Routine***

1
2
3
4:
5. n < 16
6
7
8
9

: while n > 0 do > First stage (Stage 1,2,3)
load poly
> Loading twiddle from twiddle-ptr

: doublebutter fly (poly, twiddle)
10: > Loading twiddle from (twiddle-ptr+2)
11: doublebutter fly (poly, twiddle)
12: PR
13: n——
14: end while
15: > Incrementing twiddle-ptr by 14 for next stage
16: n < 8
17: while n > 0 do > Second stage (Stage 4,5,6)
18: m <2
19: while m > 0 do
20: load poly
21: > Loading twiddle from twiddle-ptr
22: doublebutter fly (poly, twiddle)
23: > Loading twiddle from (twiddle-ptr+2)
24: doublebutter fly (poly, twiddle)
25: e
26: m— —
27: end while
28: > Incrementing twiddle-ptr by 14 for next stage
29: n——
30: e > Last stage (Stage 7)

31: end while

Refer Alg.3 for a simplified pseudo-code of the assembly optimized NTT routine of
Kyber. The twiddle constants are pre-computed and stored as a constant array at a
particular address in the flash memory (during compile time), denoted as T. This base
address T of the twiddle constant array is also stored as a 32-bit value at a given location
in the flash memory. Once the NTT routine is called, the base address T is first loaded
from flash memory (in our case, the address is (pc + 4) where pc is the program counter)
into register r1 using the Idr instruction (Line 1 colored in red). The base address T in
rl is then used as a pointer to reference different constants in the twiddle constant array
(Lines 8,10,15,21,23,28 colored in orange). We therefore refer to T as the twiddle pointer.

We make a key observation that the address for all the twiddle constants are calculated
using the twiddle pointer T. If an attacker can fault the twiddle pointer from T to T*
(Line 1), then all the twiddle constants for the NTT are retrieved from a modified address
T*. If T* points to a memory location filled with zeros, then all the twiddle constants
are essentially zeroized with only a single fault. This, therefore serves as a single point
of failure to zeroize all the twiddle constants of a target NTT, which we refer to as the
twiddle-pointer vulnerability of the NTT.

To zeroize the twiddle constants using a single fault, there are two main conditions:

1. Condition-1: Fault the twiddle pointer T to T*, when loaded from flash memory.

2. Condition-2: The faulty twiddle pointer T* points to an array filled with zeros.
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4.2.1 Condition-1: Faulting Data Loaded from Flash Memory

Faulting the data loaded from flash memory to the register was first reported by Menu et
al. [MBD"19] using Electromagnetic Fault Injection (EMFI) on an ARM Cortex-M3 based
microcontroller. They demonstrated the ability to perform both bit-set and bit-reset faults
on the fetched data, at a byte-level precision with up to 100% repeatability. They show
that the data prefetch buffer which is loaded with data from flash memory is sensitive to
fault injection. Thus, the faults are not injected on static data stored in flash memory, but
data in transit, when loaded from the flash memory to the registers.

The same fault model has also been used in a recent work by Soleimany et al. [SBHT22]
on the ARM Cortex-M4 microcontroller, to demonstrate Persistent Fault Analysis on block
ciphers using EMFI. As we show later in Sec.7, we were also able to achieve the same fault
model on a similar ARM Cortex-M4 device with a very high repeatability (up to 100%).

4.2.2 Condition-2: Retrieving Zero Data from Memory Access

We also require that the memory accesses from the faulty twiddle pointer T* results in fetch
of a zero twiddle constant array. This naturally raises a question of how many locations in
the target’s addressable memory result in fetch of a zero array. We therefore performed
an empirical memory analysis on our DUT, (i.e.) STM32F407VG microcontroller (ARM
Cortex-M4), to estimate the probability of fetching a zero array from a random 32-bit
address. For each memory access, there are three possible outcomes: (1) Zero array -
Success (2) Non-zero array - Failure and (3) Hard Fault due to illegal memory access -
Failure. In several instances, we also observe that the CPU can fetch zero data, even if
the faulty address is not mapped to a physical memory such as Flash/SRAM. For 10k
random memory accesses, we obtained a reasonably high success rate of ~ 20 — 25% to
retrieve a zero twiddle constant array. Only ~ 0.1% memory accesses led to retrieval of
non-zero data, while all the remaining memory accesses led to a hard fault, where the
device becomes unresponsive. We do agree that the obtained numbers are not fixed for a
given device, but significantly depend upon factors such as memory initialization, memory
utilization by concurrent software or other peripherals etc. We performed our experiments
on our DUT (i.e.) STM32F407 MCU, which only runs the memory test program and the
DUT has been configured based on the pgm4 library. But, what is interesting to note is
that retrieval of data from memory locations that are not mapped to any physical memory
location also return zeros.

After identifying fault parameters that satisfy both the conditions with high repeatabil-
ity, during an initial profiling, the attacker can achieve 100% attack success as shown later
in Sec. 7. Our practical experiments yield a very high fault repeatability (up to 100%) to
zeroize all the twiddle constants using a single fault in both Kyber and Dilithium.

4.2.3 On targeting the input to the NTT:

Our analysis of the NTT implementations in Kyber and Dilithium revealed that coefficients
of the NTT input are also accessed using a single pointer variable (denoted as input pointer
P). On first glance, it might appear that a single fault on the input pointer P can also
zeroize the entire NTT input. However, this pointer is not susceptible to EMFI, at least
in the same manner as the twiddle pointer. Unlike the constant twiddle array, whose
pointer/address is fetched from the flash memory, the NTT input is a variable whose
address P is calculated on the fly using arithmetic instructions, and not fetched from flash
memory. Thus, the input pointer P is not exposed to EMFT in the same way as the twiddle
pointer T. Moreover, it is not clear how P can be faulted using EMFI or other attack
vectors.

Even if the attacker can fault the input pointer, there are significant challenges. The
input pointer P is dynamically computed several times within a single execution of the
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target procedure (key generation, encapsulation, signing or verification) in Kyber/Dilithium.
So, all the computations pertaining to P need to be faulted to ensure that the faulty
value is used throughout the computation. Otherwise, the faulty output is of no use to
the attacker. Establishing such precise synchronization to fault every time instance when
P is manipulated is very hard to achieve in practice. This also requires a very detailed
knowledge about the implementation at the assembly level. On the other hand, faulting
the pointer to twiddle factors only needs to be done once for the target NTT operation.
Thus, we argue that NTT’s twiddle pointer serves as an easier target for an attacker for
practical fault injection attacks.

4.2.4 On Pointer Protection/Integrity in Software Implementations

There are several works that have demonstrated the ability to exploit pointer manipu-
lation to perform control flow hijacking attacks [Sha07, CXS*05, HSAT16]. These are
typically software attacks which typically exploit memory corruption vulnerabilities such
as buffer overflows. Thus, there are several proposals such as software stack protection,
randomized stack/heap, address space layout randomization (ASLR) and pointer au-
thentication [LNWT19, YPK ™22, SMD*13]. While these mitigation techniques typically
cater to software attacks, it is not clear if they can also prevent hardware attacks such
as transient fault injection. Moreover, these protections are typically available in the
higher-end processors such as x86-64 and ARM Cortex-A based processors, while we are
not aware of such countermeasures in embedded microcontrollers such as ARM Cortex-M
based devices.

A designer can implement dedicated and custom software countermeasures to protect
data pointers, particularly for cryptographic implementations. In this respect, utilization
of parity checks or dummy registers for redundant loading of target data pointer could be
used as potential countermeasures. However, it is possible that the designer only chooses to
protect pointers to sensitive data such as secret keys and sensitive intermediate variables,
while not choosing to protect pointers to public data such as public keys and constants.
We however demonstrate that manipulating public data such as twiddle factors can also
lead to devastating attacks compromising the security of lattice-based KEMs and signature
schemes. Moreover, we are not aware of any prior work that faults data pointers to a
memory location filled with zeros, at least in the context of attacks on post-quantum
cryptographic schemes.

4.2.5 Analysis of Multiple Open-Source Implementations

We performed an analysis of several independently designed optimized implementations
of the NTT for Kyber and Dilithium, for our DUT (i.e.) ARM Cortex-M4 based mi-
crocontroller. Our motivation was to analyze the manipulation of twiddle — pointer in
different NTT implementations. We can positively confirm that the same twiddle-pointer
vulnerability could be identified in three different NT'T implementations of Kyber based on
the works of Botros et al. [BKS19], Alkim et al. [ABCG20] and Amin et al. [AHKS22]. We
also observed the same behaviour in the NTT implementations for Dilithium, based on the
works of Guneysu et al. [GKOS18], Greconici et al. [GKS21] and Amin et al. [AHKS22].
Thus, the twiddle-pointer has been manipulated in the same manner, across several inde-
pendently developed optimized implementations of NTT, which result in the presence in
the twiddle-pointer vulnerability in all the assembly optimized implementations of NTT
for the ARM Cortex-M4 microcontroller.
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4.3 Applicability to SCA Countermeasures

We now discuss the applicability of our attack to SCA countermeasures such as shuffling
and masking.

4.3.1 Applicability to Shuffling Countermeasures

Shuffling countermeasures are commonly used in varying degrees to protect against side-
channel attacks and fault injection attacks. Our proposed attack only requires to corrupt
the twiddle factor data through pointer manipulation. Thus, shuffling the order of
operations before, after or during the target NTT operation does not deter our attack,
as long as the twiddle factors are zeroized. Recently, Ravi et al. [RPBC20] proposed
shuffled NTT implementations, intended to protect against single trace side-channel
attacks [PP19,PPM17b]. Validating our hypothesis, we experimentally verified that the
shuffled NTT implementation can be attacked in the same manner as the unprotected
NTT,as shown later in Section 7.4.1.

4.3.2 Applicability to Masking Countermeasures

Masking countermeasures for Kyber and Dilithium against SCA typically work by additively
splitting the secret into multiple shares and independently computing over them. We
consider a typical masked implementation of Kyber with ¢ shares (i.e.) protected against
SCA attack of order (¢ —1). The secret = € R, is additively split in the following manner:
x = (x1+ 22+ ...+ xt) where zi € R, for i € [1,t] denote the ¢ additive shares. Thus,
NTT over x is computed by performing NTT over all the individual shares (i.e.) NTT ()
for i € [1,t] since NTT(z) = Zizt) NTT(at). Let us consider the effect of faulting the
twiddle factors of all these NTTs to zero. Thus, the coefficients of the faulty NTT output
of each share xi for i € [1,t] is given as:

(2i); = (wi)o, ¥V j € [0,n — 1] (9)

where (z1)o denotes the first coefficient of the polynomial zi. Thus, the coefficients of the
faulty NTT output of the unshared secret z is nothing but:

(.’IAT)] = (iE].)() + (LCQ)O +...+ ((Et)(], N RS [0, n— 1] (10)

If the faulty NTT shares are used for polynomial multiplication, then the modified faulty
secret x* is nothing but,

(11)

S

. J@l)o+ (22)0 + ...+ (xt)o, ifi=0
0, otherwise

where the sum ((z1)g + (22)g + ... + (xt)p) is nothing but . Thus, faulting the NTT
of all the individual shares of x generates the same output as faulting the NTT over the
unshared polynomial = (Refer Eqn.7). We have experimentally validated the above concept
through fault simulations for the NTT used in both Kyber and Dilithium. Thus, our
proposed attack is also applicable to masked implementations, albeit with increase in the
number of targeted faults depending upon the number of shares ¢ of the target polynomial.

5 Practical Attacks on Kyber

In this section, we propose novel key recovery and message recovery attacks on Kyber
exploiting the twiddle-pointer fault vulnerability. Our analysis utilizes the algorithm of
CPA secure PKE of Kyber in Alg.1 for explanation. We utilize the key exchange protocol
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\ Alice Bob

(pk*, sk*) <= CCA.KeyGen

(sk*) + RecoverSK(pk™)

(ct, K) + CCA.Encaps(pk™)

Eve

(K) + CCA.Decaps(sk*, ct)

Figure 3: Kyber-Key-Recovery attack on key exchange protocol built upon IND-CCA
secure Kyber KEM

described in Fig.2, run between Alice and Bob to describe our key recovery and message
recovery attacks. Eve is the attacker who targets the key-generation procedure of Alice for
key recovery or the encryption/encapsulation procedure of Bob for message recovery.

5.1 Targeting Key Generation for Key Recovery

Our key recovery attack targets the NTTs in the key generation procedure, to generate
public keys whose secret keys have a very low entropy. We propose to fault the NTT
operation on the secret s € Rfj (Line 7). Let the faulty NTT output be denoted as §*.
Since §* is utilized to generate the LWE instance (Line 9), the LWE instance is implicitly
created using a low-entropy secret s*. If all the k¥ NTTs of s are faulted, then only the
first two coefficients of every polynomial of s* are non-zero, while all the other coefficients
are zeros. For Kyber768 with k£ = 3 and the span of the coefficients in [—2, 2], the faulty
secret key s* can be recovered from the public key with a brute-force complexity of 5°
(= 15,625). We can utilize the following approach to arrive at the exact value of s*. For
each guess of s*, we can compute the difference d = t — A - s*. The difference d for
the correct guess will have a short span equal to that of the error of the LWE instance
(i.e.) [—2,2]. Once the target NTTs are faulted, the secret key can be recovered with a
100% success rate. We henceforth refer to this as the Kyber-Key-Recovery attack. Refer to
Fig.3 for an illustration of the Kyber-Key-Recovery attack on the key exchange protocol
built upon IND-CCA secure Kyber KEM. We denote the attacker as Eve who faults the
key-generation procedure of Alice (highlighted in red) for key recovery.

Since the secret key of Kyber is stored in the NTT domain, the same faulty secret
is also used in the decryption procedure. Thus, the injected fault in the key generation
procedure also propagates to the decryption procedure. Moreover, the faulty secret s*
is also valid, since £, (s*) respects that of a valid secret of Kyber. Thus, key recovery is
successful while also maintaining the correctness of the scheme. Since the faulty public
key is a valid LWE instance, it is indistinguishable from random, making it difficult to
detect our attack, simply from analyzing the public key.

5.2 Targeting Encryption for Message Recovery

Our message recovery attack targets the encryption procedure of Kyber KEM. The aim is
to recover the message from a valid ciphertext corresponding to a key exchange between two
parties (Alice and Bob). We propose to target the NTT of r in the encryption procedure
(Line 17), which ensures use of a low-entropy r* to generate the ciphertext. Similar to
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Alice Bob

(pk, sk) < CPA.KeyGen /
pk
I

(ct*) « CPA.Encrypt(pk, m) |

(m) « CPA.Decrypt(sk, ct*) l
(m) < RecoverM(ct™, pk)

Eve

Figure 4: Kyber-Message-Recovery attack on key exchange protocol built upon IND-CPA
secure Kyber PKE

our key recovery attack, the brute-force complexity to guess r* for Kyber768 is 55. If
the correct r can be recovered, the secret message m can be recovered from the faulty
ciphertext (ct* = (u*,v*)) as follows:

m = Compress(v* — INTT(t o NTT(r)), 1)

Among the 5% possibilities for r*, the correct value of r* can be recovered as follows. For a
given guess of r*, the erroneous message polynomial can be calculated as,

m=v* — INTT(t? or*)

For the correct guess, the coefficients of m are clustered around 0 and ¢/2 with a short
span, while for all other guesses, the coefficients are uniformly distributed in Z,. Once
the target NTTs are faulted, the message can be recovered with a 100% success rate. We
henceforth refer to this as the Kyber-Message-Recovery attack. The impact of our message
recovery attack depends upon whether the attacker targets the (1) CPA Secure PKE or
(2) CCA secure KEM of Kyber.

5.2.1 Attacking CPA secure Kyber PKE

The CPA secure PKE is typically used for ephemeral key exchanges. Faulting its encryption
procedure results in creation of a faulty ciphertext. However, the faulty ephemeral secret
r* used to generate the ciphertext is valid, since £ (r*) respects that of a valid ephemeral
secret. Since the decryption procedure does not check for the validity of the ciphertext,
the correctness of key exchange is maintained, while also resulting in message recovery.
Refer to Fig.3 for an illustration of the Kyber-Message-Recovery attack on the key exchange
protocol based on IND-CPA secure Kyber PKE. The attacker Eve faults the encryption
procedure of Bob (highlighted in red) for message recovery.

5.2.2 Attacking CCA secure Kyber KEM

The decapsulation procedure of CCA secure Kyber can detect the validity of a ciphertext
with a very high probability. Thus, the faulty ciphertext is rejected by the decapsulation
procedure. This is because the ephemeral secret r used in the encryption procedure (Alice)
differs from that used in the re-encryption procedure after decryption (Bob). This leads to



466 Fault Injection Analysis of the Number Theoretic Transform

Alice Bob

(pk, sk) <— CCA.KeyGen vk /
_____________ N

(ct*, K*) + CCA.Encaps(pk)
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ct ct”
le— — (K™*) + ComputeKey(pk, m, ct*) fe— —

(K) < CCA.Decaps(sk, ct) (ct, K) < Reconstruct(pk, m)

Eve (MITM)
I I

Figure 5: Kyber-Message-Recovery attack on key exchange protocol built upon IND-CCA
secure Kyber KEM

failure of the key exchange, thereby rendering message recovery useless. The attack only
works if the attacker can fault the NTT of r in both the encapsulation and decapsulation
procedure. However, this is a very strong assumption since the attacker requires access to
both the communicating devices for a successful attack.

But, we observe that a Man-In-The-Middle (MITM) attacker can perform message
recovery, while still ensuring the correctness of key exchange between Alice and Bob. Refer
to Fig.4 for the Kyber-Message-Recovery attack on the key exchange protocol based on
IND-CCA secure Kyber KEM. Eve faults Bob’s encapsulation procedure (highlighted in
red), and also serves as the MITM between Alice and Bob.

The attack is carried out as follows: Faulting Bob’s encapsulation procedure results
in generation of a faulty and invalid ciphertext ct* for message m and the corresponding
session key of Bob is K*. Eve (MITM) uses the faulty ciphertext ¢t* and the public key
pk to recover the message m (denoted as RecoverM). The knowledge of m, pk and ct can
be used to compute the session key of Bob by simply running the appropriate operations
of the decapsulation procedure (i.e.) K* (denoted as ComputeKey). Subsequently, the
knowledge of pk and m can be used to generate a valid ciphertext ct for m by running the
encapsulation procedure and the corresponding session key K (denoted as Reconstruct).
Eve then sends the valid ciphertext ct to Alice, who decapsulates using the secret key to
generate the same session key K. Thus, Eve has the knowledge of session keys of both
Alice (K) and Bob (K™*), and therefore can decrypt all communication between Alice and
Bob.

6 Practical Attacks on Dilithium

In this section, we demonstrate two types of attacks on Dilithium exploiting the twiddle-
pointer vulnerability: (1) Existential Forgery Attack and (2) Verification Bypass Attack.
We utilize the algorithm of Dilithium in Alg.2 for our analysis.

6.1 Existential Forgery Attack

An attacker can forge signatures of Dilithium, if he/she is able to retrieve its primary
secret s1. A close observation of the signing procedure reveals that the primary signature
component z is closely dependent on s;, and thus faulting the generation of z can reveal
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information about s;. Generation of z (Line 24) is done as follows:

z=INTT(NTT(s1) oNTT(c)) +y 19

=INTT(s108)+y (12)
Essentially, z is nothing but the ephemeral nonce y, additively masked by the product
s1 - ¢, where ¢ is public and is part of the signature. For brevity, we refer to s; as s. For
simplicity, our analysis assumes all operands in Eqn.12 are single polynomials in R,. Since
the polynomials in each operand are handled independently of each other, our analysis
can be easily extended to all the polynomials in a straightforward manner. We present
two novel key recovery attacks on both the deterministic and probabilistic/randomized
variants of Dilithium. We assume that the attacker can trigger the target device to generate
signatures for any message of his/her choice.

6.1.1 Attack-1: Targeting Deterministic Dilithium

Our first attack is a differential style fault attack targeting the signing procedure of
deterministic Dilithium. Our target is the NTT of the challenge polynomial c. We recall
that the challenge polynomial ¢ is sparse with coefficients in {—1,0, 1}, and the coefficients
of ¢ are represented as (cop,c1,¢a,...,¢n—1). Our attack is carried out as follows: The
attacker lets the target sign the message m, whose correct signature is 0 = (z,h,¢). The
message m is chosen such that the first coefficient of challenge ¢ is 0 (i.e.) ¢g = 0. The
attacker yet again lets the target sign m, but this time, the NTT of c is faulted to zeroize
all its twiddle constants. As a result, the faulty ¢* = (¢,0,0,...,0). Since ¢p = 0, the
faulty challenge ¢* = 0. As a result, the faulty signature z* is given as:

*

"
Z =S-Cc t+Yy (13)

=y (#e¢"=0)
which is nothing but the ephemeral nonce y € Rg. Thus, the difference between z and
z* (Az) simply yields the product s - ¢. Since ¢ is known, s can be easily calculated as
Az-ct €R,.

The signing procedure follows the Fiat-Shamir with Aborts framework and thus presents
additional challenges. Successful key recovery requires that both the valid and faulty
signatures utilize the same number of iterations (k) before exiting the abortion loop (i.e.)
A(k) = k* — k = 0. However, the use of faulty intermediate values do not always guarantee
termination at the same iteration. Thus, not all successful faults result in key recovery.

We therefore performed empirical fault simulations using 1000 secret keys, assuming
a perfect fault on the NTT of ¢. We observed that an average of ~ 13 signatures are
enough to recover the secret key with 100% success rate. We henceforth refer to this as the
Sign_ Fault_ NTT__C attack. Since the generated faulty signatures are invalid, verification
after sign serves as an effective countermeasure against this attack. The same attack does
not work on the probabilistic signing procedure since it is a differential style fault attack.

6.1.2 Attack-2: Targeting Probabilistic Dilithium

The probabilistic signing procedure of Dilithium samples a random ephemeral nonce y for
every execution (independent of the message m). This makes it impossible to know apriori,
the number of iterations of the signing procedure for a given message m. Combined with
the influence of non-constant time rejection checks, the operations in the signing procedure
are temporally randomized, which makes it very difficult to perform injected targeted
faults. Moreover, differential style fault attacks do not apply, since the computations
are also randomized. Thus, mounting practical fault injection attacks on probabilistic
Dilithium is very challenging, especially using targeted faults. We however show that the
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twiddle-pointer vulnerability can be exploited for key recovery over probabilistic Dilithium
in certain settings.

The main target of our attack is the NTT over the ephemeral nonce y (Line 20).
However, we observe that the current implementations of Dilithium calculate the primary
signature z using y in the normal domain (Line 24). Thus, faulting the NTT of y does
not reveal any information about s;. However, computing z in this manner is merely an
implementation choice and that z can be alternatively computed as

z=INTT(NTT(s1) o NTT(c) + NTT(y)) u

=INTT(s10é+¥) (14)
Generating z in this manner also serves as a countermeasure against Skip_ Add fault
injection attacks (Refer Section 3). Moreover, it also has an advantage of not requiring to
retain/store y in memory, thereby reducing dynamic memory consumption by about 3.68
KB for Dilithium3. We are not aware of a public implementation of Dilithium adopting
this approach. Nevertheless, this alternative approach is indeed attractive for an designer
as a memory optimization technique as well as protection against Skip_ Add fault injection
attacks. We however identify that utilizing NTT(y) to generate z in the aforementioned
manner, makes it possible to also target probabilistic Dilithium for key recovery in the
following manner.

Firstly, operations in the probabilistic signing procedure are temporally randomized.
We however observe that the NTT of y (Line 20) is performed before the first rejection
check (Line 27). Thus, the NTT of y in the first iteration, always occurs at a fixed time,
from the start of the signing procedure, thereby making it possible to be targeted through
fault injection. By faulting the NTT of y, z is computed using a low-entropy y* and the
faulty signature z* is given as:

15
sc[i], for1<i<n-—1 (15)

{sc[i] +yli], fori=0
where sc is the product s - ¢. Thus, all but the first coefficient of sc are exposed as part
of the faulty signature z*. An attacker can simply guess the first coefficient of sc and
subsequently calculate s for each guess, until he/she finds out the correct s. The correct s
can be found out by simply checking if the span of the recovered s (i.e.) £ (s) satisfies
the bounds of a valid secret. A wrong guess will simply yield an s with a very large £,
norm. For successful key recovery, the faulty signature and its associated intermediate
variables should also satisfy all the rejection checks of the abortion loop.

We performed empirical fault simulations using 1000 secret keys and an average of
~ 3 signatures are sufficient to recover the secret key with 100% success rate. To the best
of our knowledge, we have presented the first practical fault injection attack applicable
to the probabilistic variant of Dilithium, resulting in full key recovery without requiring
any brute-force search. We henceforth refer to this attack as Sign_ Fault_ NTT_Y. This
attack also works on the deterministic variant of Dilithium. Moreover, the faulty signature
generated using the low entropy nonce y* is valid and thus passes verification. Thus, the
verification after sign countermeasure does not work against this attack, which makes it a
more stealthier attack compared to the Sign_ Fault NTT_ C attack.

6.2 Verification Bypass Attack

While the aforementioned attacks target the signing procedure, the verification procedure
also serves as a good target for fault injection attacks. One of the main motivation being,
forceful acceptance of invalid signatures through faults, for any message of the attacker’s
choice. One of the obvious and known targets for fault injection is to simply skip the
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final comparison operation that decides the validity of the received signatures (Line 39).
So, it is possible that the designer fortifies the comparison operation to protect against
such trivial attacks. Bindel et al. [BBK16] proposed a novel zeroing fault attack on the
verification procedure of GLP and BLISS signature schemes. They show that zeroizing
the challenge ¢ during verification can force acceptance of invalid signatures. However,
faulting an entire polynomial to zero is very difficult to achieve in practice. Moreover,
the applicability of their attack to Dilithium is also not clear, considering the underlying
differences between the signature schemes. In the following, we demonstrate exploitation
of the twiddle-pointer fault vulnerability to present the first practical zeroing fault attack
on the verification procedure of Dilithium.

For a given signature o = (z, h, ¢), the verification procedure computes wy’ (Line 37),
which is further hashed with the message u to recompute the challenge ¢ (Line 38). Then,
¢ is compared with the received challenge polynomial ¢, and the result of comparison
determines validity of the signature. The main target of our attack is the NTT operation
over ¢ (Line 36). If ¢ = 0, then faulting the NTT of ¢ ensures that a faulty ¢* = 0 is used
to compute a faulty wq*, which is given as:

w1™ = UseHint(h, A - z)

¢ = H(ulwr®) (16)

We observe that faulty w1* is only dependent on (h,z), which an attacker is free to
choose. We therefore propose to generate a malicious signature in the following manner:
the attacker samples a random (z*, h*) whose respective norms satisfy the conditions for
successful verification. For a chosen message p, he/she computes w1* and ¢* as in Eqn.16,
and repeats as until ¢, = 0. Then, the attacker’s crafted signature for p is o* = (z*, h*, ¢*).
Refer Alg.4 for an algorithmic description to create a malicious signature for our verification
bypass attack.

In the attack phase, the attacker queries the verification procedure with (o*, 1) and
faults the NTT over c*. Since ¢ = 0, the injected fault zeroizes the challenge ¢ and thus
computes the same w1 * and challenge c*, thereby resulting in successful verification. We
performed empirical fault simulations using 1000 random messages and were able to enforce
acceptance of invalid signatures for all the messages, thereby demonstrating a 100% success
rate for our verification bypass attack. We henceforth refer to this as Verification-Bypass
attack.

Algorithm 4 Malicious Signing Procedure for Verification Bypass Attack

1: procedure MALICIOUS-SIGN(sk, M)
2 NS R’;Xé < Expand(seed )

3 p € {0,152 « H(tr||M)

4 while ¢y = 0 do > Start of Abort Loop
5: z* < Sample,()

6 h* + Sample,, ()

7 wi = UseHint(h*, A - z*)

s ¢ = H(n, )

9 end while

10: o= (z,h,c)

11: end procedure
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7 Experimental Validation

7.1 Experimental Setup

Our experiments are performed on the optimized implementations of Kyber and Dilithium,
taken from the pgm4 library, a benchmarking and testing framework for PQC schemes on
the ARM Cortex-M4 family of microcontrollers [KRSS19]. Our DUT is the STM32F407VG
microcontroller mounted on the STM32F4DISCOVERY board. The implementations are
compiled using the arm-none-eabi-gcc compiler (with compilation options -03 -mthumb
-mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-di6) and run at a clock frequency
of 168 MHz. The DUT contains cache lines for both instruction and data fetched from
flash memory, to accelerate code execution and literal access. Both the instruction and
data caches are therefore enabled to maximize performance. The communication with the
DUT is done using UART.

We rely on Electromagnetic Fault Injection as our attack vector. Our EMFT setup
comprises of three main components: (1) a high-voltage pulse generator capable of
generating pulses up to 200V (in either polarity) with a very low rise time under 4ns;
(2) a hand-crafted electromagnetic probe designed as a simple loop antenna; and (3) a
motorised XYZ table to position the probe over the DUT. An optional oscilloscope is used
for verification of pulse strength and timing characteristics. A software synchronizes the
operation of the DUT and the EMFI setup, with faults injected based on a feedback signal
from the DUT. Relay switches are also used for automated power-on reset of the DUT.

7.2 Performing Targeted Fault Injection

For our attack evaluation, we utilize a trigger signal from the DUT to signal the start of
the target the NTT to fault. However, an attacker can also utilize EM/power side-channel
information to approximately narrow down the time window for fault injection.

7.2.1 Using Power/EM Analysis for ldentification of Time Window

We utilize EM measurements acquired from the same DUT using a near-field EM probe,
collected using a Lecroy 610Zi oscilloscope at a sampling rate of 500MSam/sec. The
repetitive nature of operations in Module-LWE/LWR based schemes, as well as a prelimi-
nary knowledge of the implementation allows us to distinguish different operations. Refer
Fig.6(a) for the EM trace from execution of the key generation procedure of Kyber768,
where we annotate the trace with names of different operations. Refer Fig.6(b) for a
zoomed-in-view of the trace which clearly shows the repeating patterns corresponding to
the £ = 3 NTTs of s. We also confirmed through experiments that a similar technique
can be applied to the Kyber’s encryption procedure as well as the signing and verification
procedures of Dilithium (waveforms are omitted for brevity).

Upon roughly identifying the time window of the target NTTs, the attacker’s main
target is the twiddle-pointer loading operation that occurs just before the start of the NTT
operation. Our EM side-channel analysis allows to narrow the time window to about
100-200 ns for fault injection.

7.2.2 Faulting Multiple NTTs in a Single Execution:

Our proposed attacks barring Sign_ Fault NTT__C and Verification-Bypass on Dilithium,
require to fault multiple NTT instances in a single execution. For instance, the Kyber-Key-
Recovery attack requires to fault k = 3 NTTs of s in the key generation procedure, which
would typically require 3 faults, one in each NTT. However, we observed through practical
experiments that a single fault on the first NTT of a given module s (i.e.) s[0] propagates
to the NTTs on all the other polynomials of s (i.e.) s[i] for ¢ € [1,k — 1]. The same effect
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ample(s)  t[0] = Acc(A[0][:],s) + e[0] t[1] = Acc(A[1][:];s) + e[1] (2] = Acc(A[2][:],s) + e[2]
PackSK  Hash(PK)

NTT(s[0]) NTT(s[1]) NTT(s[2])

(b)

Figure 6: Visual Inspection of EM trace from key generation procedure of Kyber768 on
the ARM Cortex-M4 microcontroller (a) Identification of repeating patterns and mapping
to different operations (b) zoomed-in-view of trace corresponding to the k =3 NTTs of s

is also observed on Dilithium, when faulting y € Rf; with ¢ = 5 NTTs. Moreover, the fault
only propagates to the NTTs of the the same module, while not affecting the NTT over
other modules.

We hypothesize that the aforementioned fault propagation behaviour could be due to
reuse of the twiddle-pointer for NTTs of the same module. We recall that the data cache
to the flash memory is enabled on our DUT. Hence, it is possible that the twiddle-pointer
first retrieved from flash memory for NTT of s[0] is stored within the data cache, and the
subsequent NT'Ts reuse the cached twiddle-pointer, without actually fetching from the flash
memory. Thus, faulting the first fetch of the twiddle-pointer from flash memory ensures
that a faulty value is also used for the subsequent NTTs of the same module. Thus, all our
proposed attacks on both Kyber and Dilithium, require to inject only a single targeted fault
in the target computation. This therefore serves as a best case scenario for an attacker,
where a single fault is sufficient to fault multiple NTTs of the same module. However, we
are only able to provide a hypothesis for our aforementioned observed behavior, as we are
unable to fully analyze the effect of the injected faults at the micro-architectural level on
our DUT.

7.3 Fault Injection Results

We consider the case of a profiled attacker who can profile the device and obtain the
ideal set of fault injection parameters (i.e.) voltage (v), pulse-width (w), delay (d), x-y
coordinate of the probe on chip (zy), that yields high repeatability. We refer to a given
set of values for the parameters (i.e.) (v;, w;,d;, zy;) as an injection instance. The number
of repeated experiments performed at each injection instance is denoted as the repetition
count.

To obtain injection instances that yield the best fault repeatability, we follow a two-step
approach. We first perform a preliminary fault injection campaign, sweeping coarsely over
a range of values for all the fault injection parameters, covering the entire area of the
chip, and running 5 repetitions at each injection instance. We were able to achieve faults



472 Fault Injection Analysis of the Number Theoretic Transform

0-

1-

-l
0.4
3_
0.2
4
0 1 2 3 4 5 6
(b)

No. of Faults

/

2000 /
. -
316 318 320 322 324 326 328 330 332
Time (ns)
(a)
16000 .
14000 / 0- 10
n 12000 /o ~0.8
Eloooo 1-
= 8000 0.6
o 2_
& 6000 04
Z 4000 ”/ 3-
2000 0.2
. ¥
o P \
317 319 331 333 335 327 329 331 333 1 0.0
Time (ns) o 1 2 3 4 5
(c) (d)

Figure 7: EMFI Results for Kyber-Key-Recovery (a,b) and Kyber-Message-Recovery (c,d)
for Kyber768. (a,c) denotes sensitive time window, while (b,d) denotes best fault repetability
achievable at different sensitive locations (XY) for the corresponding attacks.

with high repeatability for voltage in the range of 140-170v, and pulse width of 7 nsecs.
Based on results from the preliminary campaign, we narrowed down the area for high
fault repeatability, and ran a more detailed campaign with 100 repetitions at each selected
instance to calculate concrete numbers for fault repeatability. Results from the latter are
presented in the following.

7.3.1 Kyber-Key-Recovery

We performed a total of 69300 fault injection experiments (i.e.) 100 experiments each at
693 favourable injection instances, to zeroize the twiddle constants of all the k = 3 NTTs of
s in the key generation procedure of Kyber768. Among them, we obtained 46281 successful
faults (= 66%) and the number of successful faults against the injection delay is shown in
Fig.7(a). We observe a narrow time window of about 7 ns in which we can observe a very
high number of successful faults. Refer Fig.7(b) for the best fault repeatability achievable
(across voltage, pulse width and injection delay) as a function of the xy location of the
injection probe on the chip’s surface. We can observe that there are several fault injection
instances (in a 1 mm X 1.5 mm area) that yield a high fault repeatability up to 100%. We
also tested our key recovery attack on 100 random faulty public keys obtained from one
such fault injection instance. We were able to recover the secret key with 100% success
rate, while the faulty public keys also resulted in correct key exchanges.

7.3.2 Kyber-Message-Recovery

We performed 64600 fault injections to fault the & = 3 NTTs of the ephemeral secret r of
Kyber’s encryption procedure, among which we obtained 53844 successful faults (=~ 83%).
Refer Fig.7(c)-(d) for the corresponding fault injection results which very closely resembles
the results of our Kyber-Key-Recovery attack. We yet again observe very high repeatability
of up to 100% at several fault injection instances. We also experimentally verified our
message recovery attack on 100 random faulty ciphertexts, which yielded 100% success
rate for recovering the message and the corresponding shared secret.
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Figure 8: EMFI Results for Sign_ Fault NTT_ C on deterministic signing procedure (a,b)
and Sign__Fault_ NTT_Y on probabilistic signing procedure (c,d) and Verification-Bypass
(e,f) for Dilithium3. (a,c,e) denotes Sensitive Time window, while (b,d,f) denotes best fault
repetability achievable at different sensitive locations (XY) for the corresponding attacks.

7.3.3 Sign_Fault_NTT_C

We performed a total of 10100 fault injection experiments to fault the NTT of the challenge
polynomial ¢ in the signing procedure of deterministic Dilithium. We obtained a total of
5234 successtul faults (= 51%), all observed within a narrow time window of 13 ns (Refer
Fig.8(a)). Refer Fig.8(b) for the cartography of the best achievable fault repeatability (in
a 1.5 mm x 2.5 mm area) on the DUT. This clearly shows several locations that yield
high fault repeatability up to 100%. We tested our attack on about 100 random faulty
signatures and obtained a 100% success rate for key recovery.

7.3.4 Sign_Fault_NTT_Y

We performed a total of 50300 fault injection experiments to fault all the £ =5 NTTs of
the ephemeral nonce y in the signing procedure of probabilistic Dilithium. We obtained a
total of 9155 successful faults (a~ 26%), all observed within a slightly wider time window
of 30 ns (Refer Fig.8(c)). Refer Fig.8(d) for the cartography of the best achievable fault
repeatability (in a 0.75 mm X 2 mm area), which again shows multiple locations that
yield high fault repeatability up to 100%. We tested our attack on about 100 random
faulty signatures and obtained a 100% success rate for key recovery, while all the faulty
signatures successfully passed the verification procedure.
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7.3.5 Verification-Bypass

We performed a total of 35000 fault injection experiments the NTT of the challenge
polynomial ¢ in the verification procedure. We obtained a total of 22487 successful faults
(=~ 64%), all observed within a time window of 23 ns (Refer Fig.8(e)). Refer Fig.8(f) for
the best fault repeatability achievable as a function of the location injection probe on the
chip’s surface (in a 1.5 mm X 2.5 mm area), which again shows several locations that yield
high fault repeatability up to 100%. We also experimentally verified that invalid signatures
for attacker’s chosen messages were successfully verified with a 100% success rate.

7.3.6 Summary of Results

Thus, for all our targets, we observed between 26%-83% faults, that were successful when
performing a detailed fault injection campaign for selected fault injection instances. The
existence of yellow spots in Fig.7,8 clearly demonstrates the possibility to achieve high
fault repeatability for all of our presented attacks. Once an adversary has identified one
such fault injection instance, the attack success rate is 100%.

7.4 Attacking Fault Protected Implementations

In this section, we discuss the applicability of our attacks to protected implementations
of Kyber and Dilithium hardened against known fault attacks. Refer to Section 3 for
a detailed discussion on known fault attacks and countermeasures/mitigations for both
Kyber and Dilithium. For Kyber KEM, we only focus on attacks on the key-generation
and encryption/encapsulation procedure. For Dilithium, we focus on attacks on the
signing and verification procedure. To the best of our knowledge, we are not aware
of publicly available fault protected implementations of Kyber/Dilithium. Thus, we
implement the aforementioned countermeasures on the optimized implementations of
Kyber and Dilithium from the pgm/ library and perform our analysis on the same. All
the implemented countermeasures can be separately turned on/off based on the user
requirements.

7.4.1 Targeting Fault Protected Kyber

We experimentally validated our Kyber-Key-Recovery attack on the key-generation proce-
dure of Kyber KEM protected with the Verify Nonce Fault countermeasure. We were
able to achieve 100% success rate in key recovery, similar to that of our attack on the
unprotected implementation with the same fault injection parameters. The countermeasure
checks for repetition of polynomials in the secret module s and error module e after the
sampling procedure (Line 5,6 in Alg.1), while our attack targets the NTT of s, after
countermeasure is executed. Thus, it is trivial to see that our attack can easily bypass the
Verify__Nonce_ Fault countermeasure.

We also validated our attack on the shuffled NTT implementation proposed by Ravi
et al. [RPBC20], which involves shuffling the order of operations within the NTT. While
there are different variants of the shufied NTT, we validated our attack on the assembly
optimized implementation of the fine-shuffled NTT variant. We henceforth refer to this
countermeasure as the Shuffled NTT countermeasure. As discussed earlier in Section
4.3.1, the shuffling countermeasure is orthogonal to our attack which works by faulting
the twiddle factor data. Thus, as expected, our attack also works on the fine-shuffled
variant of NTT, and therefore believe that our attack similarly applies to all the other
shuffled variants of the NTT. Moreover, it is trivial to see that that the Shuffled_ NTT
countermeasure can also be bypassed by our attack targeting NT'Ts in the Dilithium
signature scheme.
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Table 2: Ability of our proposed attacks to bypass fault countermeasures against known
attacks on key-generation and encryption procedure of Kyber KEM

Attack (KeyGen & Encaps)

Countermeasure
Kyber-Key-Recovery Kyber-Message-
Recovery
Verify _Nonce_Fault v v

Similar to our attack on the protected key-generation procedure, our Kyber-Message-
Recovery attack is also applicable to the protected encapsulation procedure of Kyber KEM,
when hardened with the same countermeasures. Please refer Tab.2 for the summary of
applicability of our attacks on the known fault countermeasures for Kyber and Dilithium.

7.4.2 Targeting Fault Protected Dilithium

We experimentally validated our key recovery attacks on the signing procedure of Dilithium
hardened with the following three countermeasures: Verify_ After_ Sign, Verify_ Loop_ Abort
and Verify Add. We implemented the Sign_ Fault_ NTT_Y attack, targeting NTT(y) (Line
19 in Alg.2) in the probabilistic signing procedure of Dilithium. We were able to achieve
100% success rate in key recovery, similar to that of our attack on the unprotected
implementation with the same fault injection parameters.

We recall that this attack generates valid signatures which always pass verifica-
tion. Thus, this attack can easily bypass the Verify_After_Sign countermeasure. The
Verify__Loop_ Abort countermeasure only checks against skipping attacks that target the
sampling of the nonce y (Line 19), while our faults are injected in the NTT over y after
the countermeasure is executed. Moreover, Verify Add countermeasure protects against
skipping attacks targeting the final addition operation to generate z (Line 24), while our
attack targets the NTT operation that occurs much earlier (Line 19). Thus, we can see
that all existing fault countermeasures for the signing procedure are orthogonal to our
attack, and can thus be easily bypassed with our Sign_ Fault_ NTT_Y attack. Nevertheless,
we recall that the Sign_ Fault_ NTT_Y attack is only possible when NTT(y) is used to
generate z as discussed in Section 6.1.2. While we performed the attack on the probabilistic
signing procedure, the same attack applies in the same manner to the deterministic signing
procedure as well.

Table 3: Ability of our proposed attacks to bypass fault countermeasures against known
attacks on signing procedure of Dilithium signature scheme.

Attack (Sign)

Countermeasure
Sign_Fault. NTT_C Sign_Fault. NTT_Y
Deterministic Signing
Verify__Loop_ Abort v v
Verify After Sign X v
Verify Add v v
Probabilistic Signing
Verify _Loop_ Abort X v
Verify_After_Sign X v
Verify Add X v

We recall that our Sign_ Fault_ NTT__C attack on the signing procedure of deterministic
Dilithium, targets the NTT operation over the challenge polynomial ¢ (Line 23). It
results in faulty signatures that are invalid, which always fail verification. Thus, the
Verify_ After_ Sign countermeasure acts as a strong deterrent against the attack. However,
our attack can easily bypass Verify Loop_Abort and Verify Add countermeasures, in
the same manner as that of our Sign_Fault NTT_Y attack. We do not implement
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countermeasures for the verification procedure of Dilithium, as they have not been subjected
to practical fault attacks. Please refer Tab.3 for the summary of applicability of our attacks
on the known fault countermeasures for Kyber and Dilithium. We believe our study
warrants more research towards dedicated fault countermeasures for the NTT, used in
post-quantum KEMs and signature schemes.

8 Countermeasures

We have concretely shown through practical experiments that twiddle-pointer vulnerability
enables a variety of attacks on both Kyber and Dilithium, while also capable of bypassing
existing countermeasures. In this section, we present a succinct discussion on dedicated
countermeasures that can mitigate our proposed attacks exploiting the twiddle-pointer
vulnerability. We categorize our countermeasures into two types: (1) Implementation-Level
and (2) Algorithmic-Level countermeasures.

8.1 Implementation-Level Countermeasures

These countermeasures are designed at the implementation/design level to remove the
twiddle-pointer vulnerability, or reduce the ability of the attacker to precisely inject faults
during the twiddle-pointer loading operation.

1. Jitter and Horizontal Noise: Our attack requires to inject precisely targeted faults
to manipulate the loading of twiddle-pointer from flash memory. Thus, introduction
of jitter around this target operation has a significant impact of the attack’s success
rate, depending upon the amount of introduced jitter. While this does not completely
prevent the attack, it can serve as an efficient and low-cost mitigation technique.

2. On-the-fly Computation of Twiddle Factors: Instead of pre-computing the
twiddle constants, one can adopt an on-the-fly approach to compute the twiddle
constants for the NTT/INTT, thereby eliminating the twiddle-pointer vulnerability.
However, on-the-fly computation of the twiddle constants could impose a heavy
performance penalty on the NTT/INTT.

3. Twiddle Pointer Integrity Checks: One can also utilize parity checks or dummy
registers for redundant loading of the twiddle pointer, to detect any faults on the
twiddle pointer value.

8.2 Algorithmic-Level Countermeasures

These countermeasures attempt to detect faults in the twiddle factors through exploitation
of the inherent properties of the NTT operation.

1. Checking Sanity of Twiddle Pointer Array: We also observe that twiddle
factors are nothing but powers of the n'® roots of unity (denoted as w), which
satisfy the property that w™ = 1 and w™? = ¢ — 1. Once the twiddle pointer is
loaded for the NTT operation, we can check whether the aforementioned arithemtic
properties are satisfied. To check whether w™ = 1, one can pick ¢t twiddle factors
at random such that their product is expected to be w™ = 1. If the comparison
passes successfully, only then do we proceed with the NTT operation. For the faulty
NTT with zero twiddle factor array, this comparison always fails, thereby providing
concrete protection against complete zeroization of twiddle factors.

2. Computing Entropy of NTT Output: A closer observation of the faulty NTT
output reveals that all of its n coefficients have a fixed value (i.e.) first coeflicient
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repeating n times. Thus, the faulty NTT output has very little entropy compared
to the correct NTT output, which consists of uniformly random coefficients in the
range [0, g]. Thus, a simple check to test the entropy/distribution of coefficients can
be used to detect fault in the NTT.

Thus, a designer can employ a combination of the aforementioned implementation-level
and algorithmic-level countermeasures to provide strong protection against our proposed
fault attacks on the NTT.

9 Conclusion

In this paper, we have shown that the twiddle-pointer vulnerability enables a variety of
attacks on practical implementations of both Kyber and Dilithium. We demonstrate novel
key recovery and message recovery attacks on Kyber and key recovery and verification
bypass attacks on Dilithium, using Electromagnetic Fault Injection which work with a
100% success rate on optimized implementations of Kyber and Dilithium on the ARM
Cortex-M4 microcontroller. We also demonstrate that our attacks are able to bypass
known fault countermeasures. Since our attack targets the inherent properties of the NTT,
we believe our attacks can be extended to other schemes such as Saber, NTRU and NTRU
Prime, which also utilize the NTT for polynomial multiplication. Our work stresses the
need for concrete custom countermeasures against fault injection attacks for practical
implementations of the NTT, especially in embedded devices.
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