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Abstract. It has been proven that the white-box ciphers with small encodings
will be vulnerable to algebraic and computation attacks. By leveraging the large
encodings, the self-equivalence and implicit implementations are proposed for ARX-
based white-box ciphers. Unfortunately, these two types of white-box implementations
are proven to be insecure under the algebraic attack. Different from algebraic attacks,
computation analysis can extract the secret key from the memory access traces without
software reverse engineering. It is still an open problem whether the self-equivalence
and implicit implementations can resist the computation analysis.
In this paper, we analyze the encoded structure of the self-equivalence/implicit white-
box ARX ciphers and discuss its resistance to the computation analysis, such as
differential computation analysis (DCA) and algebraic degree computation analysis
(ADCA). The results reveal that the large input, encoding, and round key can
practically mitigate DCA and ADCA. To deal with the large space, we introduce a
new method which is named chosen-plaintext computation analysis (CP-CA). Based
on a partial key guess and deliberately chosen intermediate value, CP-CA constructs a
reverse function to calculate a set of plaintexts. With the obtained plaintexts, the large
affine and non-linear encodings will be reduced to a small space. Subsequently, CP-CA
mounts the computation analysis on the traces to recover the secret key. Following
CP-CA, we propose a CP-DCA attack and reformulate ADCA as chosen-plaintext
linear encoding analysis (CP-LEA). The experimental results indicate that the self-
equivalence white-box SPECK32/48/64/96/128 and implicit white-box SPECK32/64
implementations are vulnerable to CP-DCA and CP-LEA attacks.
Keywords: White-box implementation · Self-equivalence encoding · Implicit func-
tion · Differential computation analysis · Algebraic degree computation analysis

1 Introduction
The white-box attack context assumes that an attacker has full control over the execution
environment. The sensitive values such as the secret key can be extracted by memory
dumps. The adversary can also set a breakpoint to the algorithm and manipulate the
executed primitive by reverse engineering. The seminal works on white-box cryptography
[CEJvO02a,CEJvO02b] were introduced by Chow et al. in 2002. They proposed the first
white-box AES and DES implementations to prevent the key extraction attack in the white-
box context. Their method of white-boxing a cipher is called the CEJO framework. The
main idea of CEJO is to convert the subround functions into a series of look-up tables (LUTs)
with embedded subkeys. Subsequently, each LUT is composed with random encodings to
obfuscate the key information. The applied encodings can be divided into two categories,
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namely internal and external encodings. Internal encodings can be canceled pairwise
between two successive LUTs. Differently, external encodings are applied to the input and
output of the cryptographic algorithm. It modifies the primitive by encoding the first-round
input and the final-round output. Following CEJO, many white-box implementations
[LN05,BCD06,Kar10,BCH16] have been proposed. Unfortunately, based on the properties
of collision and affine equivalence, both the encodings and the secret key can be extracted
from the CEJO framework and its variants [BGE04,WMGP07,MWP10,LRM+13,DFLM18].

At CHES 2016, differential computation analysis (DCA) [BHMT16] was proposed as
the software counterpart of differential power analysis (DPA) [KJJ99] to the white-box
context. DCA requires that the white-box implementation is constructed without the input
or output external encoding. It mounts a statistic analysis on the computation trace which
consists of the runtime computed values of the cryptographic algorithm. The principle
behind DCA is that one can obtain a high correlation between the traces and the key-
dependent sensitive values. A DCA adversary only needs to analyze the accessed memory
during the execution of the implementation without the knowledge of encoding details. It
has been demonstrated that many publicly available white-box solutions are vulnerable to
DCA. Moreover, since DCA can be mounted automatically, it is an effective attack against
the white-box challenges [BT20]. Hereafter, many other computation analyses have been
proposed with different attack methods, such as spectral analysis [SMG16] and mutual
information analysis [RW19]. Bock et al. [BBMT18,BBB+19] exhibited the weakness of
4-bit non-linear encoding and demonstrated the ineffectiveness of the internal encodings
against DCA. Carlet et al. [CGM21] introduced a new spectral analysis to defeat the 8-bit
non-linear encoding. Recently, Tang et al. [TGLZ23] compared the capabilities of different
published methods and proposed a generic algebraic degree computation analysis (ADCA)
by exploiting the degree of encodings. Compared with various analyses, ADCA can defeat
most cases of encodings with the lowest time complexity. Based on these observations,
CEJO is vulnerable to both algebraic attack and computation analysis.

Different from CEJO with small encodings, a self-equivalence framework [MS16] was pro-
posed to construct a white-box implementation with large encodings. The self-equivalence
is a pair of affine functions (A,B) such that S = B ◦ S ◦ A for an Sbox layer S. It
combines the secret key with the full-round linear layer and applies large self-equivalence
encoding to hide the key information. Ranea and Preneel [RP20] analyzed the security
of substitution-permutation network (SPN) ciphers with self-equivalence encodings. The
substitution layer of an SPN cipher is a concatenation of small and cryptographically
strong Sboxes. They proved that the self-equivalences of a cryptographically strong Sbox
have a diagonal shape. Moreover, a small Sbox only has a few pairs of self-equivalences,
such as 2040 pairs of AES [BCBP03]. Thus, the self-equivalence encodings are inadequate
to protect the SPN ciphers. Motivated by this work, Vandersmissen et al. [VRP22] applied
the self-equivalence encodings to protect the add-rotate-xor (ARX) ciphers and proposed
an instantiated self-equivalence SPECK [BSS+13] (SE-SPECK). An ARX cipher does not
rely on a strong Sbox to provide the nonlinearity. Its non-linear layer contains a large
modular addition which is not a concatenation of small Sboxes. Moreover, compared
with an AES Sbox, an n-bit modular addition has a larger number of self-equivalences,
which is exponential in n. However, the self-equivalence of SPECK has a sparse matrix.
Vandersmissen et al. [VRP22] introduced an algebraic attack to recover the self-equivalence
encodings and extract the secret key of SE-SPECK.

To hide the sparse structure of self-equivalence, Ranea et al. [RVP22] proposed an
implicit framework for ARX ciphers and implemented a SPECK instance (IF-SPECK). It
applies 2n-bit large affine or affine-quadratic self-equivalence encoding to obfuscate the key
information. Furthermore, the implicit implementation represents each round function by a
low-degree implicit function without the exposure of the encoding structure. Each implicit
round function is implemented as binary multivariate polynomials. It solves an affine
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system to obtain the round output based on a round input. Ranea et al. [RVP22] stated that
the implicit implementation can resist all known white-box algebraic attacks when using a
quadratic input encoding or a large non-linear layer. However, Biryukov et al. [BLU23]
proposed an algebraic attack on IF-SPECK. The results demonstrated that when input or
output external encoding is omitted, linear decoding analysis (LDA) [BU18,GPRW20] can
break the implementation with the time complexities O(n3) for affine encoding and O(n6)
for quadratic encoding.

Motivation. To the best of our knowledge, there is no published result on the computation
analysis against self-equivalence and implicit function frameworks, especially the DCA
attack which computes the correlations between the sensitive values and the collected
traces. Although the cryptanalysis on IF-SPECK without the external encoding is similar
to the case of computation analysis, LDA requires access to the full state of the encoded
value to ensure the decoding system contains all the target bits. This implies that an LDA
attacker needs to locate a large window in the traces. Diversely, for DCA-style computation
analysis, it is sufficient to focus on some single intermediate bits in the trace at a time
without the full state of the encoded value. Therefore, the resistances of SE-SPECK and
IF-SPECK in the DCA context have not been analyzed.

Our Contribution. This paper focuses on solving the open problems to evaluate the
security of the self-equivalence and implicit ARX implementations against the computation
analysis without either the input or the output external encoding. For a better illustration
of our attack, we mainly focus on the detailed descriptions of the white-box SPECK
implementation with a trivial input external encoding. Our contribution consists of the
following three parts.

1. Computation analysis against the encoded ARX structure. We first refine
an encoded target function which represents the combination of the first few rounds
of SE-SPECK and IF-SPECK. Since DCA is the original analysis that computes
the correlation while ADCA is the latest one that focuses on the algebraic degree,
we consider the attack instances of DCA and ADCA against SE-SPECK and IF-
SPECK. The theoretical analysis indicates that DCA and ADCA cannot be mounted
practically because of the large dimensions of input, key guess, and encoding.

2. A new chosen-plaintext computation analysis. To deal with the large encoding
phase, we introduce the concept of a reverse function. It is constructed by some
reverse operations of the cryptographic algorithm and needs to be initialized with a
key guess. The introduction of the reverse function helps to reduce the large encoding
into a small one. It can bypass the high time complexity of the encoding, input,
and key enumerations over the full space. We also propose a new chosen-plaintext
computation analysis (CP-CA) with three attack phases, namely partial key guess,
partial key verification, and round key verification. By fixing some parts of the
inputs and guessing the partial key, CP-CA can distinguish the correct key by the
computation analysis on the traces.

3. Practical attacks on ARX-based white-box ciphers. For concrete instances,
we construct a CP-DCA attack and reformulate ADCA as a new chosen-plaintext
linear encoding analysis (CP-LEA) following the CP-CA model. CP-DCA computes
the linear enumerations for the reduced encodings while CP-LEA constructs a linear
system to detect the correct key. Although CP-LEA seems like an algebraic attack
instead of a correlation-based one, it still focuses on analyzing the traces as the
computation analysis. Moreover, CP-DCA and CP-LEA are extended as higher-
degree attacks to break the non-linear encodings. For block size 2n, Table 1 compares
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the time complexities of LDA, DCA, and CP-CA to attack the ARX-based white-box
ciphers. To counteract affine encodings, DCA requires an exhaustive search on
22n linear encodings and 2n key candidates. The symbol t represents the length
of computation traces. CP-CA generates the reverse functions based on |K| key
candidates and constructs N nb-bit chosen inputs. To break the quadratic encoding,
CP-CA applies a degree-2 extension to the chosen inputs. The symbol q denotes
the number of the extended higher-degree bits and p = q + 1. Particularly, DCA
cannot defeat the large non-linear encoding. To validate the CP-CA, we mount
the practical CP-DCA and CP-LEA attacks on SE-SPECK-32/48/64/96/128 and
IF-SPECK-32/64. The attack results (refer to Table 5 in Section 6.2) reveal that
both SE-SPECK and IF-SPECK are vulnerable to the CP-CA attacks. Moreover,
the practical attack results are also demonstrated on the self-equivalence and implicit
white-box CRAX [BBdS+20] implementations (refer to Table 6 in Section 6.5). The
source code of our experiments is publicly available 1.

Table 1: The theoretical time complexities of LDA, DCA, and CP-CA on the round key
recovery of ARX-based white-box ciphers with affine and quadratic encodings.

Encoding
LDA DCA CP-CA (Section 4)

( [BLU23]) ( [BBB+19]) CP-DCA CP-LEA
(Section 5.1) (Section 5.2)

Affine O(t3) O(t ·N · 23n) O(n/nb · |K| · 2nb · t ·N) O(n/nb · |K| · t ·N · (nb + 1))
Quadratic O(t6) - O(n/nb · |K| · 2q · t ·N) O(n/nb · |K| · t ·N · p)

Organization. Section 2 introduces the preliminaries of ARX-based white-box ciphers
and computation analysis. Section 3 analyzes the encoded structure of SE-SPECK and
IF-SPECK. Its resistance against DCA and ADCA is also discussed. The CP-CA method
is proposed in Section 4. Section 5 provides a detailed description of two attack instances of
CP-DCA and CP-LEA. Section 6 illustrates the experimental results and the comparisons
of CP-CA. Section 7 concludes this paper.

2 Preliminaries
2.1 Notions and Notations
Let Fn

2 be the vector space of an n-bit value. The operator ⊕ denotes the addition in F2,
which is also called an exclusive-or (XOR) operation. A right circular shift of x by α bits
is denoted by x≫ α while a left circular shift of x by β bits is denoted by x≪ β. A
modular addition x� y between two numbers x ∈ Fn

2 and y ∈ Fn
2 is defined as an addition

modulo 2n. Its inverse operation, namely modular subtraction, is represented by x� y.
A Boolean function of n variables is a mapping f : Fn

2 7→ F2. A function F : Fn
2 7→ Fm

2 is
called (n,m)-bit function and refers to an n-bit function if n = m. An identity function is
represented by Fid. The Hamming weight (HW) of a vector is the number of its nonzero
coordinates. The concatenation of vectors a and b is represented as a ‖ b. The algebraic
normal form (ANF) is to represent a Boolean function as a polynomial on n variables,
with coefficients over F2. Every variable in each monomial has a degree 0 or 1. The degree
of a Boolean function is the maximum degree of the monomials in its ANF. The degree of
an (n,m)-bit function is the maximum degree of its m coordinate functions. A function
F is affine if its degree is 1. An n-bit affine function F can be represented by a matrix

1https://github.com/scnucrypto/CP-CA

https://github.com/scnucrypto/CP-CA
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multiplication and a vector addition, such that F = Ax⊕ a where A is an n× n matrix
and a is a non-zero n-bit vector. An affine function F is linear if F (0) = 0 and it satisfies
F (x) = Ax with the constant vector a is 0. The correlation (Pearson correlation coefficient)
between two n-bit vectors u and v is defined as

Cor(u, v) = n11n00 − n01n10√
(n00 + n01)(n00 + n10)(n11 + n01)(n11 + n10)

,

where nij represents the number of positions where u equals to i and v equals to j. If
the denominator equals zero, the correlation is set to zero. The correlation satisfies
−1 ≤ Cor(u, v) ≤ 1. If |Cor(u, v)| = 1, u and v are linearly correlated. If Cor(u, v) = 0, u
and v are linearly independent.

2.2 ARX Ciphers and SPECK
ARX ciphers consist of three arithmetic operations which are modular addition, bitwise
rotation, and XOR. The non-linear layer of ARX ciphers contains the modular addition
without the Sbox. ARX is a flexible and lightweight structure for designing cryptographic
algorithms. SPECK [BSS+13] is an ARX block cipher with a Feistel-like structure. It
has a block size of 2n bits where n is the word size for n = 16/24/32/48/64. Thus, it has
5 variants, namely SPECK32/48/64/96/128. The size of the master key is m · n where
m = 2/3/4. The number of encryption rounds nr ranges from 22 to 34 for different versions
of SPECK. Let x(r)

0 and x(r)
1 denote the half n-bit inputs to r-th round. The n-bit round

key in the r-th round is denoted by k(r). The round function for SPECK is computed as
follows. The rotation constants are specified as α = 7, β = 2 for SPECK32 and α = 8,
β = 3 for other variants.

x
(r+1)
0 =

(
(x(r)

0 ≫ α)� x(r)
1

)
⊕ k(r)

x
(r+1)
1 = (x(r)

1 ≪ β)⊕ x(r+1)
0

2.3 White-Box SPECK Implementations
Following the CEJO framework, white-box implementations apply the encodings to protect
the inputs and outputs of key-dependent round functions.
Definition 1 (Encoding [RP20]). Let F be an (n,m)-bit function. Let (I,O) be a pair
of n-bit and m-bit permutations, respectively. An encoded function of F is defined as
F = O ◦ F ◦ I, where I and O are called the input and output encoding, respectively.
Definition 2 (Encoded Encryption Function [RP20,RVP22]). Let Ek = E(nr) ◦ · · · ◦E(1)

be the encryption function of an iterated n-bit cipher with fixed key k. A white-box
implementation Ek is an encoded Ek composed of encoded round functions, that is,

Ek = E(nr) ◦ · · · ◦ E(1) = (O(nr) ◦ E(nr) ◦ I(nr)) ◦ · · · ◦ (O(1) ◦ E(1) ◦ I(1)),

where the n-bit round encodings (I(r), O(r)) satisfying I(r+1) · O(r) = Fid for r =
1, 2, · · · , nr − 1.

Because of the pairwise canceling encodings between the successive rounds, the encoded
encryption can also be represented as Ek = O(nr) ◦ Ek ◦ I(1). The encodings (I(1), O(nr))
are the external encodings. In the following analysis, we suppose that the white-box
implementation is constructed without the input external encoding. Thus, I(1) = Fid and
the inputs of the white-box implementation are equivalent to the inputs of the standard
cipher. By leveraging the self-equivalence of the non-linear layer, two types of white-box
implementations are proposed for white-boxing ARX ciphers, which are self-equivalence
and implicit frameworks.
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Self-Equivalence Encoding. SE-SPECK rearranges the components of the round function
Ek into a SPN structure. Each round function consists of a substitution layer S and a
following affine layer AL, except for the first round which only contains an affine layer,
such that

Ek = (AL(nr) ◦ S) ◦ · · · ◦ (AL(1) ◦ S) ◦AL(0).

The constructions of the affine and substitution layers are described as follows.

S(x0, x1) = (x0 � x1, x1)
AL(0)(x0, x1) = (x0 ≫ α, x1)

AL
(r)
1≤r≤nr−1(x0, x1) =

(
(x0 ⊕ k(r))≫ α, (x1 ≪ β)⊕ (x0 ⊕ k(r))

)
AL(nr)(x0, x1) =

(
x0 ⊕ k(nr), (x1 ≪ β)⊕ (x0 ⊕ k(r))

)
Definition 3 (Affine (Linear) Self-Equivalence [RP20]). Let F be an n-bit function. An
affine (resp. linear) self-equivalence of F is a pair of affine (resp. linear) functions (A,B)
such that F = B ◦ F ◦A.

As depicted in Figure 1, SE-SPECK applies the self-equivalence encodings of S to each
of the key-dependent affine layers. The encoded AL(r) is defined as

AL(r)2≤r≤nr−1 = A(r) ◦AL(r) ◦B(r−1),

where A(r) and B(r) are affine (linear) self-equivalence encodings satisfying B(r) ◦S ◦A(r) =
S. Since the first-round affine layer AL(0) does not contain any key material, it is not
protected using self-equivalence encoding. Moreover, owing to the absence of external
encodings, the affine layers AL1 and ALnr are constructed as

AL(1) = A(1) ◦AL(1), AL(nr) = AL(nr) ◦B(nr−1).

The substitution layer S with its self-equivalence can be reduced to S. Thus, the
introduced self-equivalence encodings can be canceled by composing the round functions.
The resulting self-equivalence implementation Ek is computed as

Ek = (AL(nr) ◦ S) ◦ · · · ◦ (AL(1) ◦ S) ◦AL(0)

= AL(nr) ◦ (B(nr−1) ◦ S ◦A(nr−1)) ◦ · · · ◦ (B(1) ◦ S ◦A(1)) ◦AL(1) ◦ S ◦AL(0)

= AL(nr) ◦ S ◦ · · · ◦ S ◦AL(1) ◦ S ◦AL(0) = Ek.

⋙ 𝛼

𝑘(1)

𝑥0
(1)

𝑥1
(1)

𝑥0
(4)

𝑥1
(4)

⋘ 𝛽

⊞ ⊕

⊕





⋙ 𝛼

𝐴(1)

⋘ 𝛽

⊞ ⊕
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⋙ 𝛼
𝐵(1) 𝐴(2)

𝑘(2)

Round-1 Round-2 Round-3

𝐴𝐿(0) 𝐴𝐿 1 𝐴𝐿 2𝑆 𝑆

Figure 1: First three encryption rounds of SE-SPECK.



640 Unboxing ARX-Based White-Box Ciphers: CP-CA and Its Applications

Implicit Function. IF-SPECK represents the round function by a quasilinear implicit
function and protects it with large self-equivalence encodings. An implicit function can be
implemented as multivariate binary polynomials.

Definition 4 (Implicit Function [RVP22]). Let F be an n-bit function. An implicit
function of F is a (2n,m)-bit function P satisfying P (x, y) = 0⇔ y = F (x).

Definition 5 (Quasilinear Function [RVP22]). A (2n,m)-bit implicit function P is quasi-
linear if for all x ∈ Fn

2 the (n,m)-bit function y 7→ P (x, y) is affine.

We assume that the r-th round function E(r) of an ARX cipher consists of a non-linear
layer S and a linear layer AL(r) with a round key. It satisfies E(r) = S ◦ AL(r). Let T
denote a quasilinear implicit function of S such that T (x, y) = 0 ⇔ y = S(x). Let I(r)

and O(r) represent the input and output encodings, respectively. The encoding O(r) needs
to be affine for the quasilinear property while there is no restriction of the encoding I(r).
Let (A(r)

S , B
(r)
S ) be the self-equivalence of S, which satisfies S = B

(r)
S ◦ S ◦A(r)

S . Let V (r)

denote a random linear encoding satisfying V (r)(0) = 0. We can compute a quasilinear
implicit function P (r) of the round function E(r) as

P (r) = V (r) ◦ T ◦ (A(r)
S , (B(r)

S )−1) ◦ (AL(r), Fid) ◦ (I(r), (O(r))−1).

Based on the property of implicit function, we have

P (r)(x, y) = 0⇔ T ◦ (A(r)
S ◦AL

(r) ◦ I(r)(x), (B(r)
S )−1 ◦ Fid ◦ (O(r))−1(y)) = 0

⇔ (B(r)
S )−1 ◦ (O(r))−1(y) = S ◦A(r)

S ◦AL
(r) ◦ I(r)(x)

⇔ y = O(r) ◦B(r)
S ◦ S ◦A(r)

S ◦AL
(r) ◦ I(r)(x)

⇔ y = O(r) ◦ S ◦AL(r) ◦ I(r)(x) = O(r) ◦ E(r) ◦ I(r)(x).

For considering non-linear self-equivalence, if A is affine and B is quadratic, (A,B) is
called an affine-quadratic self-equivalence. Let C denote a random affine encoding. Let
(A(r), B(r)) be an affine or affine-quadratic self-equivalence of E(r), the round encodings
are defined as

(I(r), O(r)) =
(
A(r) ◦B(r−1) ◦ (C(r))−1, C(r+1)

)
=
(
B(r−1) ◦ (C(r))−1, C(r+1) ◦ (B(r))−1

)
.

For two consecutive rounds, the input and output encodings cancel out each other as
follows. (

O(r+1) ◦ E(r+1) ◦ I(r+1)
)
◦
(
O(r) ◦ E(r) ◦ I(r)

)
=
(
C(r+2) ◦ E(r+1) ◦A(r+1) ◦B(r) ◦ (C(r+1))−1

)
◦(

C(r+1) ◦ E(r) ◦A(r) ◦B(r−1) ◦ (C(r))−1
)

= C(r+2) ◦ E(r+1) ◦A(r+1) ◦B(r) ◦ E(r) ◦A(r) ◦B(r−1) ◦ (C(r))−1

= C(r+2) ◦ E(r+1) ◦A(r+1) ◦ E(r) ◦B(r−1) ◦ (C(r))−1

= C(r+2) ◦ (B(r+1))−1 ◦ E(r+1) ◦ E(r) ◦B(r−1) ◦ (C(r))−1

If B is quadratic, the input and output encodings are non-linear. If B is affine, the
input and output encodings are affine. We note that the first round does not contain
any key information. Thus, it is constructed without encodings. Since the absence of
the external input encoding, the second round function is constructed without the input
encoding. Figure 2 depicts the explicit functions of the first two rounds of IF-SPECK.
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Figure 2: First two encryption rounds of IF-SPECK.

2.4 Computation Analysis
Attack Model. Following the passive attack model [RW19], computation analysis assumes
that the attacker can invoke the white-box implementations many times with arbitrary
plaintexts. It analyzes the intermediate values during the execution of the cryptographic
algorithm. The computation traces are recorded with the help of dynamic binary instru-
mentation (DBI) tools. Therefore, computation analysis can be regarded as a gray-box
technique against white-box implementations, without the knowledge of implementation
details and reverse engineering efforts.

Definition 6 (Computation Trace). A computation trace v ∈ Ft
2 consists of t samples,

such that v = {v1, v2, · · · , vt}. Each sample vi ∈ F2 for 1 ≤ i ≤ t corresponds to an
intermediate computed variable of the cryptographic algorithm.

Definition 7 (Selection Function). Let K and X denote the vector spaces of key and
input, respectively. A selection function ϕk(x) computes a sensitive value that depends on
a key guess k ∈ K and an input x ∈ X to the cryptographic algorithm.

Definition 8 (Distinguisher). For 1 ≤ i ≤ N , a distinguisher δk is a function D which
maps a selection function with N inputs x(i), and N corresponding computation traces
v(i) to a score vector, such that

(δk)k∈K = D
((
ϕk(x(1)), ϕk(x(2)) · · · , ϕk(x(N))

)
, (v(1),v(2) · · · ,v(N))

)
.

The proposed computation analysis methods apply different distinguishers to recover
the secret key by analyzing the traces and the inputs. Thus, different methods have
various capabilities to defeat the encodings for recovering the secret key. To the best of
our knowledge, ADCA is the latest computation analysis against the internal encodings.
Although DCA is less effective than ADCA, it is the first analysis based on correlation
computation. The analysis of DCA can help to discuss the resistance of the encoded ARX
structure against the correlation-based attack. Thus, this paper mainly focuses on the
DCA and ADCA attacks.

DCA. DCA first collects the computation traces by invoking the white-box implemen-
tation with random inputs. Subsequently, it computes the correlations between the
hypothetical values and the collected computation traces. Each hypothetical value is the
output of a selection function computed by a key guess. Such a DCA distinguisher can be
described as follows.

δDCA
k = arg max |Cor((ϕk(x))i,vj)|

To analyze a white-box implementation without the external input encoding, a selection
function is the first-round Sbox such that ϕk(x) = S(x⊕ k) for a key guess k ∈ K. DCA
calculates the correlations between the i-th coordinate output of the selection function
(ϕk(x))i and the j-th sample of traces vj . The highest computed correlation is assigned as
the rank of the corresponding key guess. The key guess with the highest correlation is the
most likely correct one.
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ADCA. ADCA is a higher-degree computation analysis that was proposed for the CEJO
structure. The attack procedure of ADCA consists of two phases, namely the chosen-
input phase and the degree-computation phase. The target function can be defined as
Ok∗(x) = EC ◦ S ◦ ⊕k∗ where EC denotes an encoding and k∗ is the secret key. In
the chosen-input phase, ADCA collects the computation traces by choosing the inputs
x′ = S−1(x) ⊕ k for a key guess k ∈ K. With the chosen inputs x′, the target function
can be transformed as Ak(x) = Ok∗(x′) = EC ◦ S ◦ ⊕k∗ ◦ ⊕k ◦ S−1. For a correct key
guess k = k∗, the target function Ak∗ is transformed into the encoding function EC.
Thus, the degree of Ak∗ is equal to the one of EC. For an incorrect key guess k 6= k∗,
the target function Ak = EC ◦ S ◦ c ◦ S−1 where c is a non-zero vector. Because of the
high degree of an Sbox (degree n − 1 for an n-bit Sbox), the degree of an n-bit Ak is
most likely n − 1. When the degree of the encoding EC is less than n − 1, Ak∗ can be
distinguished from the random functions Ak for its lower degree. Thus, the correct key
k∗ can be recovered. In the degree-computation phase, ADCA detects the degrees of the
mappings (fk)i : Fn

2 7→ F2 : (fk)i(x) = vi from the inputs x ∈ Fn
2 to each sample of traces

vi ∈ F2, where 1 ≤ i ≤ t. The ADCA distinguisher is depicted as follows.

δADCA
k = arg max#{dalg ((fk)i) ≤ d | i ∈ [t]}

A degree-d ADCA detects the degrees of the Boolean functions (fk)i and distinguishes the
correct key with the maximum number of dalg ((fk)i) ≤ d. When computing the degree of
(fk)i, ADCA constructs a system of linear equations based on its ANF representations.
Based on the d-th degree extension of the inputs x and each sample of traces, when the
key guess is correct, the linear equations will be solvable by a degree-d ADCA such that
dalg ((fk)i) ≤ d.

3 Computation Analysis against SE-SPECK and IF-SPECK
Although SE-SPECK and IF-SPECK have been broken by algebraic attacks, they lack the
security evaluations of computation analysis. The author of the implicit framework [RVP22]
stated that the current automated gray-box attacks cannot be applied to break the implicit
implementations, with the following statement:

“These attacks usually target an intermediate computation where the output
is encoded with a small function and depends on a few key bits. However, in
implicit implementations, the only computations are evaluations of polynomials
with large inputs and large encodings, and the outputs of these computations
depend on the whole round keys. Finding new automated attacks to implicit
implementations is an interesting challenge that we leave as future work.”

In this section, we refine an encoded structure of SE-SPECK and IF-SPECK to discuss
its resistance to computation analysis, such as DCA and ADCA.

3.1 Analysis of Encoded Structure
Both SE-SPECK and IF-SPECK apply the encoding to protect the inputs and outputs of
round functions. SE-SPECK combines the self-equivalence encodings and the affine layer of
SPECK to hide the subkeys. The resulting affine function is precomputed in the white-box
implementation. Thus, the computation analysis cannot collect the intermediate values
during the construction of the affine function. Similarly, IF-SPECK combines the round
operation and the self-equivalence encoding as an implicit function. It computes the round
outputs by solving an affine system. Hence, the attacker has no access to the intermediate
values of the round functions. Based on these analyses, we suppose that the computation
analysis can only analyze the traces containing the encoded round inputs/outputs.
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By combining the first two encryption rounds, we can obtain a function F which has
the same structure in both SE-SPECK and IF-SPECK. Let x(1)

0 and x(1)
1 denote an n-bit

half of plaintexts, respectively. The n-bit first-round key is represented by k(1). The
definition of F is described as follows. Figure 3 also depicts the structure of F .

F : (Fn
2 )2 7→ (Fn

2 )2 : F (x(1)
0 , x

(1)
1 ) = (y0, y1)

y0 =
((

(x(1)
0 ≫ α)� x(1)

1

)
⊕ k(1)

)
≫ α

y1 =
((

(x(1)
0 ≫ α)� x(1)

1

)
⊕ k(1)

)
⊕ (x(1)

1 ≪ β)

⋙ 𝛼𝑥0
(1)

𝑥1
(1)

⊞



𝑘(1)

⋘ 𝛽

⊕

⊕

 ⋙ 𝛼 𝑦0

𝑦1

Figure 3: The same function F in the first two rounds of SE-SPECK and IF-SPECK.

In SE-SPECK, the third-round output can be computed as follows.

(x(4)
0 , x

(4)
1 ) = AL(2) ◦ S ◦A(1) ◦ F (x(1)

0 , x
(1)
1 )

= AL(2) ◦ (B(1))−1 ◦ S ◦ F (x(1)
0 , x

(1)
1 )

AL(2) = A(2) ◦AL(2) ◦B(1)

Let EC denote a combined function of the encoded affine layer AL(2) and the self-
equivalence (B(1))−1 such that EC = AL(2) ◦ (B(1))−1. The third-round output of
SE-SPECK can also be represented as

(x(4)
0 , x

(4)
1 ) = EC ◦ S ◦ F (x(1)

0 , x
(1)
1 ).

We note that EC can be generalized as a random affine encoding if the self-equivalence
encoding A(2) is randomly generated in a large space.

The second-round output of IF-SPECK applies a modular addition S and an output
encoding EC = C(2) ◦ (B(1))−1 to F . With the representation of an explicit function, its
second-round outputs can be equivalently computed as

(x(3)
0 , x

(3)
1 ) = C(2) ◦ (B(1))−1 ◦ S ◦ F (x(1)

0 , x
(1)
1 ) = EC ◦ S ◦ F (x(1)

0 , x
(1)
1 ).

The output encoding EC is affine if the self-equivalence B(1) is affine. However, when
the quadratic self-equivalence is applied, the output encoding EC is non-linear because
of the component of (B(1))−1. Particularly, the degree of EC is unknown. For achieving
practical storage costs, the non-linear encoding EC needs to be constructed with low
degrees, such as quadratic and cubic. Based on the above analysis, Figure 4 depicts the
equivalent structure of the first three rounds in SE-SPECK and the first two rounds in
IF-SPECK.

The equivalent structure can be refined as an encoded function F ′k∗ , which is constructed
by F followed by a modular addition function S and a random encoding EC. Let k∗
denote the secret key of F ′k∗ . By omitting the superscript of the first round, Figure 5
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Figure 4: The equivalent structure of SE-SPECK and IF-SPECK.

illustrates the structure of the function F ′k∗ , which can also be represented by the following
equations.

F ′k∗ : (Fn
2 )2 7→ (Fn

2 )2 : F ′k∗(x0, x1) = EC ◦ S ◦ F (x0, x1) = EC(t0, t1) = (s0, s1)
t0 = y0 � y1

= ((((x0 ≫ α)� x1)⊕ k∗)≫ α)� ((((x0 ≫ α)� x1)⊕ k∗)⊕ (x1 ≪ β))
t1 = y1 = (((x0 ≫ α)� x1)⊕ k∗)⊕ (x1 ≪ β)

⋙ 𝛼𝑥0

𝑥1

⊞



𝑘∗

⋘ 𝛽

⊕

⊕

 ⋙ 𝛼 ⊞



𝐸𝐶

𝑠0

𝑠1

𝑡0

𝑡1

𝑦0

𝑦1

𝐹

Figure 5: The structure of encoded function F ′k∗ in SE-SPECK and IF-SPECK.

The vector t0 can be deduced as a combination of a key addition and a substitution,
namely the value of S(x⊕ k∗). The vector t1 can be regarded as a substitution followed by
a key addition, i.e., the value of S(x)⊕ k∗. The output (s0, s1) applies a random encoding
EC to the concatenation of the vectors t0 and t1. Based on this refined structure, we
assume that the outputs (s0, s1) of SE-SPECK and IF-SPECK can be collected as the
computation traces. For defeating IF-SPECK and SE-SPECK, the traces contain their
second-round and third-round outputs, respectively. The computation analysis attempts to
calculate the sensitive values (t0, t1) for different key guesses and to analyze the correlation
between (t0, t1) and the encoded vectors (s0, s1).
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3.2 DCA and ADCA against SE-SPECK and IF-SPECK
DCA. For the affine self-equivalences, the sensitive variables are obfuscated by the affine
mappings. Bock et al. [BBMT18,BBB+19] analyzed the linear encoding against DCA.
The results demonstrate that the rows with HW = 1 in the linear encoding will cause the
key leakage. Different from CEJO with 8-bit small encodings, SE-SPECK and IF-SPECK
apply at least 32-bit large encodings. Thus, the probability of constructing the affine
encoding for SE-SPECK and IF-SPECK with HW = 1 is low. To counteract the linear
encoding, Bock et al. suggested enumerating all the linear combinations of the sensitive
values to fully recover the linear encodings. For such a brute-force DCA against SE-SPECK
and IF-SPECK, DCA needs to enumerate the 22n linear combinations of the sensitive
values. Let the key and the block sizes be n and 2n, respectively. The time complexity of
DCA against SE-SPECK and IF-SPECK with affine self-equivalence is O(t ·N · 23n). In
some extreme cases, it requires N = 22n plaintexts to generate 22n computation traces,
which is too high to compute the correlations. For the quadratic self-equivalence cases,
DCA is unlikely to obtain a high correlation due to the large non-linear encodings.

ADCA. For the target function Ok∗(x) = EC ◦ S ◦ ⊕k∗ with an encoding EC in CEJO,
ADCA constructs a set of inputs x′ = S−1(x) ⊕ k based on a key guess k. As ARX
ciphers, SE-SPECK and IF-SPECK use the large modular addition for the substitution
layer without the small Sbox. The output dimension of modular addition is n, which is
different from the encoding size 2n. Furthermore, the target function of SE-SPECK and
IF-SPECK has a more complex structure. Therefore, it cannot trivially adapt the ADCA
to attack SE-SPECK and IF-SPECK.

Discussion. Based on the above analysis, two significant challenges of computation
analysis against SE-SPECK and IF-SPECK can be concluded as follows.

• Large inputs and key candidates. The non-linear layer of ARX ciphers consists of a
modular addition. For attacking AES-like ciphers, DCA needs to compute a sensitive
value, such as the Sbox output based on a key guess. Afterward, it computes the
correlation between the trace and the computed sensitive value. Because of the large
dimension of inputs and the large number of key candidates, the time complexities
will be high in attacking SE-SPECK and IF-SPECK.

• Large encoding. Different from the 4/8-bit encodings in CEJO, white-box ARX
ciphers are constructed by full-round encodings with at least 32-bit dimension. For
an encoded ARX cipher with block size 2n, it is impractical to compute the 22n

linear combinations of the sensitive values to recover the affine encoding. Moreover,
the implicit function can be constructed with quadratic encodings. It is infeasible
for DCA to defeat the non-linear encodings. Although CEJO is vulnerable to DCA,
it is still an open problem whether DCA can break the self-equivalence and implicit
implementations with large affine or quadratic encoding.

4 Chosen-Plaintext Computation Analysis
The large encoding of self-equivalence and implicit structures hides the correlations be-
tween the sensitive values and the computation traces. To counteract encoding, it is
straightforward to exhaustively search all possible constructed encodings of the selection
function. If the key guess is correct, this process computes the encoded value which is
highly correlated to the sample in the computation traces. However, it is impractical to
perform this attack with a large block size. In this section, chosen-plaintext computation
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analysis (CP-CA) is introduced to reduce the affine encodings into a small linear space.
Moreover, it can defeat the quadratic and other higher-degree non-linear encodings.

4.1 An Overview of CP-CA
The context of CP-CA follows the attack model of computation analysis. A CP-CA attacker
constructs a reverse function with specific inputs to generate a set of target plaintexts.
Subsequently, CP-CA invokes the white-box implementations with the chosen plaintexts
and collects the computed intermediate values as computation traces. By applying the
modeling analysis between the inputs and traces, CP-CA can extract the secret key of the
white-box implementations.

Definition 9 (Reverse Function). A reverse function is applied to choose the plaintexts of
the cryptographic algorithm. It is constructed by some reverse steps of the cryptographic
algorithm and needs to be instantiated by a key candidate.

Definition 10 (Attack Window). Let Fk(x) denote the n-bit target function with the
input x ∈ Fn

2 , secret key k ∈ Fn
2 , and the n-bit output trace y = Fk(x). An attack window

W with size m (m ≤ n) consists of a part of the target function such that W(x′) = fk′(x′)
for an m-bit mapping f with the partial input x′ ∈ Fm

2 , partial key k′ ∈ Fm
2 , and the m-bit

output trace y′ =W(x′).

A CP-CA attack consists of the following three phases.

1. Partial key guess. CP-CA constructs a reverse function G with a partial key guess
k ∈ K. For instance, CP-CA can guess the partial key with nibble size. The function
G maps the inputs X to a set of plaintexts P. Subsequently, CP-CA invokes the
cryptographic algorithm with the plaintext p ∈ P and collects the corresponding
trace v. By mounting the computation analysis on each attack window, CP-CA can
distinguish a set of possible correct partial key candidates.

2. Partial key verification. For each two nibble key guesses, CP-CA extends the
dimensions of the attack window to byte level to reduce the number of key candidates.

3. Round key verification. CP-CA generates a different reverse function G with various
parameters to verify the correct key among the previously obtained key candidates.

In Phase 1, CP-CA computes the plaintext p from a reverse function G with chosen
input x. We note that p consists of the output of G instead of its input. The motivations
for the introduction of the reverse function are explained as follows.

• Reducing the input space. The reverse function will fix some bits of its inputs. Since
CP-CA focuses on the modeling analysis between the chosen inputs (also the chosen
intermediate values) and the computation traces, the input space of the CP-CA will
be less than the block size 2n.

• Reducing the encoding space. By fixing some input bits, the encoded output bits
of the target function are correlated to a part of the input bits. Hence, the large
encoding will be reduced to a small one.

4.2 The Reverse Function Construction
Different from CEJO, the encoded round outputs of the SE-SPECK and IF-SPECK
depend on the whole round key. To reduce the key space, we introduce an instance of the
reverse function G. It can calculate the unencoded sensitive values of the target function
by choosing the inputs to G. Based on these unencoded values, CP-CA can focus on
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a small-dimension encoding to reduce the attack time complexity. Let k ∈ K denote
a key guess for the reverse function and k∗ ∈ Fn

2 represent the embedded correct key
for the cryptographic algorithm. Let (z0, z1) and (x0, x1) be the inputs and outputs of
G, respectively, where the vectors (x0, x1) are also the plaintexts of the cryptographic
algorithm. A key-initialized reverse function Gk is defined as follows.

Gk : (Fn
2 )2 7→ (Fn

2 )2 : Gk(z0, z1) = (x0, x1)
x0 = ((((z0 � z1)≪ α)⊕ k)� ((z1 ⊕ ((z0 � z1)≪ α))≫ β))≪ α

x1 = (z1 ⊕ ((z0 � z1)≪ α))≫ β
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Figure 6: The reverse function of CP-CA against SE-SPECK and IF-SPECK.

Figure 6 also depicts such an application of a reverse function to the inputs of the
encoded cryptographic algorithm. The computation of (x0, x1) contains the inverse
operations from computing (t0, t1). To formalize the cancellation of the reverse function,
the unencoded intermediate values (t0, t1) of the refined structure F ′k∗ can be redefined as
follows.

Fk∗ : (Fn
2 )2 7→ (Fn

2 )2 : Fk∗(x0, x1) = (t0, t1)
t1 = (((x0 ≫ α)� x1)⊕ k∗)⊕ (x1 ≪ β)
t0 = ((((x0 ≫ α)� x1)⊕ k∗)≫ α)� t1

The outputs (x0, x1) of the reverse function Gk can be computed as follows.

x1 = (z1 ⊕ ((z0 � z1)≪ α))≫ β,

x0 = ((((z0 � z1)≪ α)⊕ k)� x1)≪ α.

With the composition of Fk∗ and Gk, the sensitive values (t0, t1) can be derived from
the inputs (z0, z1) as follows.

Fk∗ ◦Gk : (Fn
2 )2 7→ (Fn

2 )2 : Fk∗ ◦Gk(z0, z1) = (t0, t1)
t1 = (((z0 � z1)≪ α)⊕ k ⊕ k∗)⊕ (z1 ⊕ ((z0 � z1)≪ α))

= z1 ⊕ k ⊕ k∗ (1)
t0 = ((((z0 � z1)≪ α)⊕ k ⊕ k∗)≫ α)� t1

= ((((z0 � z1)≪ α)⊕ k ⊕ k∗)≫ α)� (z1 ⊕ k ⊕ k∗) (2)

The reverse function is utilized to cancel out some first-round operations in the ARX-
based white-box ciphers. The unencoded intermediate values in the following rounds can
be precisely computed, which are the same values as the chosen inputs for the correct key
guess. By elaborately selecting the intermediate values, CP-CA can mount the computation
analysis on the collected traces.
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4.3 Theoretical Analysis
Correct Key Guess. If the key guess k of the reverse function Gk is correct, we have
k = k∗ such that k ⊕ k∗ = 0. The variables in Eq. (1) and Eq. (2) can be canceled out as

t1 = z1, t0 = (((z0 � z1)≪ α)≫ α)� z1 = (z0 � z1)� z1 = z0.

For a correct key guess, the operations of the reverse function Gk∗ and certain rounds of
the cryptographic algorithm are canceled out. The unencoded intermediate values (t0, t1)
are equal to the inputs (z0, z1) of Gk∗ . CP-CA can distinguish the correct key by applying
the computation analysis on the chosen inputs (z0, z1) (also the intermediate values (t0, t1))
and the computation traces. The collected traces are composed of the encoded values
(s0, s1) = EC(z0, z1) for an unknown affine or low-degree non-linear encoding EC. Figure
7 depicts the transformation from the inputs (z0, z1) of Gk∗ to the outputs (s0, s1) of the
encoded function F ′k∗ .

𝑥0

𝑥1

𝐸𝐶

𝑠0

𝑠1

𝐹𝑘∗
′

𝑧0

𝑧1

𝑡0

𝑡1

𝐺𝑘∗ 𝐹𝑘∗

equality

Figure 7: The transformation of a reverse function Gk∗ for a correct key guess.

Incorrect Key Guess. For an incorrect key guess, the operations of the reverse function
Gk and certain rounds of the cryptographic algorithm cannot be canceled out. The
unencoded sensitive values (t0, t1) are computed by Eq. (1) and Eq. (2). It is a random
function for different key candidates k 6= k∗. The computation of the encoded outputs
(s0, s1) is an affine function or a low-degree non-linear mapping of (t0, t1) instead of (z0, z1).
CP-CA cannot distinguish the correct key by analyzing the inputs (z0, z1) and the traces
(s0, s1).

Affine Encoding. To deal with the affine encoding phase, CP-CA fixes half of the inputs
such that z1 = c. The nb (nb < n) bits of z0 are the chosen inputs, while the most
significant na bits and the least significant nc = n− na − nb of z0 are binary zero values.
With the reverse function and the chosen inputs, the dimension of the affine encoding
will be reduced, namely from 22n to 2nb . Therefore, CP-CA can mount the computation
analysis for the dimension-reduced inputs and encodings.

Proposition 1. Let z ∈ {0, 1}nb denote an nb-bit vector, c be an n-bit constant. Let Na

and Nc represent an na-bit and an nc(= n− na − bb)-bit zero vector, respectively. Given
an 2n-bit affine function EC : F2n

2 7→ F2n
2 , the resulting vector EC(Na ‖ z ‖ Nc, c) can

also be computed as L′ · z ⊕ l, where L′ is a 2n× nb matrix and l ∈ {0, 1}2n.

Non-Linear Encoding. Based on the affine-quadratic self-equivalence, IF-SPECK can
also be constructed with non-linear input/output encodings. Because of the chosen inputs,
na + nc + n bits (Na, Nc and c) of the inputs b = (Na ‖ z ‖ Nc, c) are constant values.
The trace values y can be computed as y = (s0, s1) = EC(b) for a low-degree non-linear
encoding EC. Because of these fixed input bits, some variables in the monomials of the
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ANF representations of EC are constants with degree 0. Accordingly, the degrees of
the coordinate functions and the non-linear encoding EC will be reduced. For a 2n-bit
degree-d (d ≤ 2n− 1) non-linear encodings, each coordinate function yi where 1 ≤ i ≤ 2n
can be computed by ANF with the degree no more than d. We suppose that a degree-d
monomial in its ANF is defined as bi+1bi+2 · · · · bi+d, where each bi+j (1 ≤ j ≤ d) denotes
a coordinate bit of the chosen input b. If any bit bi+j is a constant of Na, Nc or c such
that bi+j = 0/1, the monomial bi+1bi+2 · · · · bi+d has a reduced degree which is less than d.
Specifically, the ANF has the most degree nb when the bits {bi+j} are all composed of the
bits of z. For an instance of the quadratic encoding case, each coordinate function yi for
1 ≤ i ≤ 2n can be computed by a degree-2 ANF. We suppose that a degree-2 monomial in
its ANF is defined as bi · bj (1 ≤ i 6= j ≤ 2n), where bi and bj denote two different bits
of the chosen input b. If one of bi and bj is a constant bit of Na, Nc or c, the monomial
bi · bj has a reduced degree which is less than 2. If bi (resp. bj) is a constant, it will be
transformed as (0/1) · bj (resp. (0/1) · bi). If both bi and bj are constant bits, the product
bi · bj is a constant value. Only for the case that both bi and bj are the bits of z, the
monomial bi · bj has degree 2.

4.4 Partial Key Recovery
Partial Key Guess. The reverse function in CP-CA is used to cancel out some operations
in the encoded implementation. When the key guess is correct, the unencoded sensitive
values are identical to the inputs of the reverse function. However, it is impractical to
enumerate the key guess over the round key space. To reduce the key guess space, we
introduce the phase of partial key guess into the CP-CA attack. The attacker can guess a
nibble key (24 = 16 key candidates) and construct the corresponding reverse function to
distinguish the possible correct key. When generating the reverse function, CP-CA fixes z1
as 0, such that Eq. (1) and Eq. (2) can be transformed as

t1 = k ⊕ k∗ = ∆k,
t0 = (((z0 ≪ α)⊕ k ⊕ k∗)≫ α)� (k ⊕ k∗)

= (z0 ⊕ (∆k≫ α))�∆k.
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Figure 8: The illustration of the partial key guess in CP-CA.

During the encryption, the addition between the key guess k and the correct key k∗ is
a constant. If the key guess is correct, we have ∆k = 0 such that t0 = z0 ⊕ (∆k≫ α).
The sensitive value t0 is linearly mapped from the chosen intermediate value z0. On the
contrary, t0 will be transformed non-linearly with the chosen input z0 for the carry of the
modular addition. Based on these observations, CP-CA guesses the partial key from the
least significant bits. Figure 8 depicts the attack process of the partial key guess. There is
a sliding attack window with nibble size in both the key guess k and the chosen input z0.
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Specifically, CP-CA guesses the least significant nibble key at first. It then mounts the
computation analysis between the chosen input nibble z0 and the collected computation
traces. We can obtain a set of possible key candidates for the least significant nibble
bits. Subsequently, CP-CA combines the possible correct key guesses with the next nibble
key guesses and applies the computation analysis on the next nibble chosen inputs. By
iterating the above process, the round key will be fully recovered from the least significant
nibble to the most significant one.

Partial Key Verification. According to the property of modular addition, some incorrect
keys can also be falsely reported with the same first ranking as the correct ones. Moreover,
each nibble key guess is concatenated with the previously recovered key candidates. The
space might be large for the most significant nibble key. Since more traces might enhance
the results in the power analysis, the attacker can extend the dimension of the attack
window, i.e., to mount a CP-CA with larger nb and N . Figure 9 illustrates the process
of partial key verification. For each two recovered nibble key candidates, CP-CA applies
the computation analysis between the chosen input byte z0 and the traces to verify the
correctness of the byte key guess. Consequently, the verified keys will be combined with the
next nibble key guess to recover the round key. Figure 10 depicts the alternated process of
the nibble key guess and byte key verification.
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Δk2 = 0 and Δk1 = 0

Figure 9: Process of partial key verification.

The first nibble 
key guess 

The second nibble 
key guess 

The third nibble 
key guess 

⋯

Key verification of the first byte

Key verification of the second byte

⋯

Figure 10: Alternated process of the partial key guess and verification.

Round Key Verification. After the last byte key verification, we can obtain a small set of
round key candidates. To distinguish the correct key, we introduce a round key verification
phase into CP-CA. It constructs the reverse function with different parameters, especially
the chosen constant inputs. For an incorrect key guess, the different constants c in the
chosen inputs (z0, z1) = (Na ‖ z ‖ Nc, c) generate different intermediate values (t0, t1). If
c = 0, the non-linear modular subtractions in the computation of t0 (refer to Eq. (2)) will
be canceled out. Moreover, ∆k = k ⊕ k∗ has low HW when the incorrect key k is similar
to the secret key k∗. The vector t0 is similar (or equal) to the input z0. Thus, it fails to
distinguish the correct key. Based on this observation, we suggest instantiating a non-zero
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constant for z1 such that CP-CA distinguishes the correct round key with a nibble chosen
input z and a non-zero constant input c.

4.5 Master Key Recovery
After extracting the first-round key, CP-CA needs to construct another reverse function
corresponding to the next round. Moreover, the reverse function is initialized with the
recovered keys. Suppose that the size of the master key is m · n, where n is the half of the
block size and m is the number of key words. If k(1), · · · k(m) are known, we can compute

l(r+m−2) = (k(r) ≪ β)⊕ k(r+1),

l(r) =
((
l(r+m−2) ⊕ (r − 1)

)
� k(r)

)
≪ α.

The master key is composed of l(m−1), · · · , l(1), and k(1). We note that each round key
can be recovered separately. The time complexity of the master key recovery is m times of
the round key recovery. Since the key schedule of SPECK is invertible, a full key recovery
can be deduced from the master key.

5 The CP-CA Distinguishers
For a concrete analysis, this section first proposes an attack instance of CP-DCA, which
reconstructs the DCA attack following the CP-CA model. Subsequently, a new chosen-
plaintext linear encoding analysis (CP-LEA) is proposed as a reformulation of ADCA
to recover the linear system between the chosen intermediate values and a part of the
traces. Moreover, CP-DCA and CP-LEA are extended as higher-degree attacks to break
the non-linear encodings.

5.1 Chosen-Plaintext DCA
Affine Encoding. As a computation analysis, CP-DCA calculates the correlation between
the chosen intermediate values and the traces. The key guess with the maximum number
of the highest correlation is the most likely correct.

Corollary 1. Let yi (1 ≤ i ≤ 2n) denote the output coordinate of EC(Na ‖ z ‖ Nc, c).
There exist 2n linear combinations L of z satisfying |Cor(L · z, yi)| = 1.

Proof. Proposition 1 illustrates that the output yi can be represented as a product of the
row in L′ and the input z, followed by a constant addition. It indicates that yi can be
computed by an affine function of z. If the constant l is zero, the computation of yi is a
linear function of z. Thus, we have |Cor(L · z, yi)| = 1 where L is one of the 2n row vectors
of L′. Since a constant addition with a binary value is equal to a bit flip of the vector, the
computed correlation will not change. This implies that |Cor(L · z, yi)| = 1 is still satisfied
in a non-zero constant case. The corresponding 2n linear combinations L are equivalent to
the 2n row vectors of L′.

Based on Corollary 1, the outputs (s0, s1) of the encoded function F ′k∗ (refer to Figure
7) can be computed by a linear combination of the chosen input z. Ideally, 2n correlations
1 can be calculated between 2n linear combinations L of z and the traced values (s0, s1).
Hence, CP-DCA enumerates all 2nb linear combinations of the chosen input z and looks
for a key guess with the maximum number (most likely 2n) of the highest correlation
(most likely 1) as the correct key candidate. Let (z0, z1) denote two n-bit inputs of the
reverse function Gk for a key guess k. To reduce the vector space of the chosen inputs,
CP-DCA fixes half of the inputs such that z1 = c (c 6= 0) for an n-bit constant c. The input
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z0 = (Na ‖ z ‖ Nc) = (Na ‖ {0, 1}nb ‖ Nc) for nb = n− na − nc, where Na and Nc denote
an na-bit and nc-bit binary zero value, respectively. Thus, the CP-DCA attacker only
chooses the nb bits out of the n bits in z0. The 2n-bit plaintexts (x0, x1) are computed as

(x0, x1) = Gk(z0, z1) = Gk (Na ‖ z ‖ Nc, c) .

Let z(j) ∈ {0, 1}nb (1 ≤ j ≤ N) denote the j-th nb-bit chosen input of Gk among N
inputs. For each key guess k, CP-DCA collects N t-sample computation traces v(j) =
{v(j)

1 , v
(j)
2 , · · · , v(j)

t } which contain the outputs of the function Gk(Na ‖ z(j) ‖ Nc, c). For
the principal of the reverse function, the sensitive value is equal to the chosen input z(j)

if the key guess is correct. Thus, CP-DCA enumerates the 2nb linear combinations L of
z(j) and calculates the correlation between the resulting binary value L · z(j) and each
sample v(j)

i for 1 ≤ i ≤ t of the traces v(j). Let k∗ denote the correct key and Ek∗ be the
white-box cryptographic algorithm. Figure 11 illustrates the construction of Gk and the
workflow of a CP-DCA distinguisher.
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Figure 11: Reverse function Gk and CP-DCA distinguisher.

The computation of linear combinations of the bits in z(j) aims to calculate all possible
linear encodings of the sensitive values (t0, t1) (refer to Figure 7). For a 2n-bit affine
encoding, the values (t0, t1) are encoded by 2n linear combinations corresponding to the 2n
rows of the matrix in the affine encoding. Hence, 2n samples of the traces can be linearly
represented by the bits of the sensitive value for the correct key case. If the key guess is
incorrect, less than 2n samples of the traces are correlated to the linear combinations of
the sensitive values. Based on these analyses, the CP-DCA distinguisher selects the key
guess with the maximum number of the highest correlation as the most likely correct one.
The CP-DCA distinguisher δCP−DCA

k is defined as follows.

δCP−DCA
k = arg max #

{
max

∣∣∣Cor(L · z(j), v
(j)
i )
∣∣∣}

Time Complexity. Algorithm 1 describes the detailed procedures of CP-DCA. It requires
a reverse function G and N nb-bit chosen inputs z(j) for 1 ≤ j ≤ N . The algorithm
contains the three processes as illustrated as follows.

• Traces collection. For each key guess k, CP-DCA encrypts N chosen plaintexts (com-
puted by N chosen inputs z(j)) and collects the corresponding t-sample computation
traces v(j) = (v(j)

1 , v
(j)
2 , · · · , v(j)

t ). The time complexity of this process is O(|K| ·N),
where K is the key space.
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Algorithm 1 The procedure of CP-DCA
Input: na, nc (na, nc ≤ n): the vector space of the zero input values

nb = n− na − nc: the vector space of the chosen inputs
c: an n-bit constant vector
N inputs z(j) ∈ {0, 1, · · · , 2nb − 1} for 1 ≤ j ≤ N
a reverse function G : (Fn

2 )2 7→ (Fn
2 )2

Output: a set of the probably correct keys K′
1: K′ ← ∅
2: kcount ← 0
3: kmax ← 0
4: for each k ∈ K do . each key guess
5: for i← 1, N do . chosen plaintexts
6: v(j) = (v1, v2, · · · , vt)← Ek∗(Gk(Na ‖ z(j) ‖ Nc, c)) . traces collection
7: lcount ← 0
8: lmax ← 0
9: Lscore ← empty associative array
10: for each L ∈ {1, 2, · · · , 2nb − 1} do . enumerations of linear combination
11: smax ← 0
12: for i← 1, t do . each sample of traces
13: for j ← 1, N do
14: {vi} ← (v(j))i

15: {ys} ← L · z(j)

16: score ← Cor({ys}, {vi}) . correlation computation
17: if score > smax then
18: smax ← score
19: Lscore[L]← smax
20: if Lscore[L] > lmax then
21: lmax ← Lscore[L]
22: kscore ← lmax
23: if kscore = kmax then . searching for the highest correlation
24: for each L ∈ {1, 2, · · · , 2nb − 1} do
25: if Lscore[L] = lmax then
26: lcount ← lcount + 1
27: if lcount > kcount then
28: kcount ← lcount
29: K′ ← {k}
30: if lcount = kcount then
31: K′ ← K′ ∪ {k}
32: if kscore > kmax then
33: kmax ← kscore
34: for each L ∈ {1, 2, · · · , 2nb − 1} do
35: if Lscore[L] = lmax then
36: lcount ← lcount + 1
37: kcount ← lcount . the maximum number of the highest correlation
38: K′ ← {k}
39: return K′
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• Correlation computation. CP-DCA computes 2nb linear combinations L of the bits
in the chosen inputs z(j) and calculates the correlation between the resulting binary
value L · z(j) and each sample of traces v(j)

i for 1 ≤ i ≤ t and 1 ≤ j ≤ N . This
process is related to the size of key candidates |K|, the number of linear combinations
2nb , the number of samples t, and the number of plaintexts/traces N . Thus, this
process has the time complexity O(|K| · 2nb · t ·N).

• Searching for the highest correlation. For each key guess, CP-DCA computes the
correlations for 2nb linear combinations. Subsequently, CP-DCA searches for the key
with the maximum number of the highest correlation as the most likely correct key.
This process has the time complexity O(|K| · 2nb).

Based on the above analyses, the time complexity of CP-DCA depends on the process of
correlation computation. Due to the partial key guess phase, CP-DCA needs to iterate n/nb

times to recover the round key. Thus, the total time complexity is O(n/nb · |K| · 2nb · t ·N).

Non-Linear Encoding. To break the non-linear masking, higher-degree higher-order DCA
(HDHO-DCA) was proposed by Tang et al. [TGCX23] at CHES 2023. A degree-d and
order-n HDHO-DCA multiplies all d points in the computation trace and then combines
every n nodes in the higher-degree trace. It aims to fully recover both the non-linear and
linear encodings. Following the CP-CA model, we reformulate HDHO-DCA as higher-
degree computation analysis (HDCA) to deal with the non-linear encoding of ARX-based
white-box ciphers. Different from HDHO-DCA, CP-HDCA extends the higher-degree bits
of the chosen inputs instead of the computation traces. A degree-d CP-HDCA computes
all the degree-l (2 ≤ l ≤ d) extensions of the bits of the chosen inputs z(j)

d . By combining
the original nb input bits, the extension consists of q =

(
nb

1
)

+ · · ·+
(

nb

d

)
items. CP-HDCA

computes 2q linear combinations L of the extended bits z(j)
d and calculates the correlation

between the resulting binary value L · z(j)
d and each sample of traces v(j)

i for 1 ≤ i ≤ t
and 1 ≤ j ≤ N . Thus, the time complexity of the correlation computation will be
O(|K| · 2q · t ·N) while the one of searching for the highest correlation will be O(|K| · 2q).

5.2 Chosen-Plaintext Linear Encoding Analysis
Both CP-DCA and CP-HDCA enumerate the encodings with the exponential time com-
plexity. Particularly, CP-HDCA is impractical for the quadratic encoding with the time
complexity O(252 · t) when nb = 8, d = 2, |K| = 28, and N = 28 in the byte-level partial
key verification phase. To reduce the time complexity, we reformulate ADCA as CP-LEA
following the CP-CA model. CP-LEA recovers the linear systems between the chosen
intermediate values and a part of the computation traces to distinguish the correct key.

Affine Encoding. Due to the reverse function reducing the large linear encoding into a
small space, we combine the technique of ADCA and the model of CP-CA as CP-LEA to
recover the linear mappings from the chosen intermediate values to a part of the traces.
CP-LEA constructs a linear system that consists of the coordinates of z and each sample
of v. The key guess with the maximum number of solvable linear systems is the most
likely correct one.

Corollary 2. Let yi (1 ≤ i ≤ 2n) denote the output coordinate of EC(Na ‖ z ‖ Nc, c).
Let Zj (1 ≤ j ≤ nb) denote the bits of z. There exist 2n vectors a = (a0, a1, · · · , anb

)
satisfying

[1 Z1 · · · Znb
] · aT = yi, for 1 ≤ i ≤ 2n.
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Proof. Proposition 1 reveals that the output yi can be represented as a product of a row in
L′ and the input z, followed by a constant addition. It indicates that yi can be computed
by an affine function of z. Let (a1, · · · , anb

) denote a row vector of L′. Let a0 be a constant
bit. Each output yi can be represented as

yi = (a1, · · · , anb
) · z ⊕ a0.

If the constant a0 is zero, the computation of yi will be a linear function of z. The 2n vectors
(a1, · · · , anb

) are equivalent to the 2n row vectors of L′. The corresponding 2n constant
bits a0 form the constant vector l of the affine mapping. The vector (a0, a1, · · · , anb

) also
corresponds to the coefficients of the ANF of the affine mapping.

Based on Corollary 2, the outputs (s0, s1) of the encoded function F ′k∗ (refer to Figure
7) can be computed by a linear system of the chosen input z. Moreover, 2n linear systems
can be solved because of the linear mappings from the chosen inputs z to the trace values
(s0, s1). Hence, CP-LEA looks for a key guess with the maximum number (most likely 2n)
of solvable linear systems as the correct key candidate. Let z(j) ∈ {0, 1}nb (1 ≤ j ≤ N)
denote the j-th nb-bit chosen input of Gk among N inputs. For each partial key guess k,
CP-LEA collects N t-sample computation traces v(j) = {v(j)

1 , v
(j)
2 , · · · , v(j)

t } which contain
the outputs of the function Gk(Na ‖ z(j) ‖ Nc, c). For a correct key guess, the trace values
(s0, s1) are computed as the encoded values EC(Na ‖ z(j) ‖ Nc, c) for an affine encoding
encoding EC. Since the trace values v(j)

i (1 ≤ i ≤ t) are linearly mapped from the chosen
inputs z(j), there exists a constant vector a = (a0, a1, · · · , anb

) satisfying

[1 Z(j)
1 · · · Z(j)

nb
] · aT = v

(j)
i ,

where Z(j)
i for 1 ≤ i ≤ nb denotes the coordinate of z(j), and v(j)

i for 1 ≤ i ≤ t is a trace
sample. For N chosen inputs and each sample of traces, the attacker can construct a
linear system. If the system is solvable, the trace values can be represented as a linear
combination of the chosen inputs. It implies that the key guess is correct and the resulting
vector (a0, a1, · · · , anb

) recovers the equivalent linear encoding. Figure 12 illustrates the
construction of Gk and the workflow of the CP-LEA distinguisher.
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Figure 12: Reverse function Gk and CP-LEA distinguisher.

The constructed linear system aims to calculate an equivalent linear encoding of
the affine encoding EC. Since the trace values are linearly mapped from the chosen
intermediate values, the linear system is solvable for the correct key guess. If the key guess
is incorrect, the linear system has no solution because the trace value is randomly mapped
from the chosen inputs. The trace value cannot be represented by a linear mapping of
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the chosen inputs. Therefore, the CP-LEA distinguisher selects the key guess with the
maximum number of solvable linear systems as the most likely correct key. Let Z denote
the coefficients of the linear system which consists of the coordinates of the chosen inputs.
Let vi denote the vector of the same sample of different traces. The constructed linear
system can be represented as Z · a = vi for a possible solution vector a. Let r(Z) denote
the rank of the matrix Z. The linear system is solvable if r(Z) ≥ r(Z | vi). The CP-LEA
distinguisher δCP−LEA

k is defined as follows.

δCP−LEA
k = arg max # {r(Z) ≥ r(Z | vi)}

We note that only the trace vector vi is related to the key guess. Since the computation
of the coefficients Z of the linear system is irrelevant to the key candidates and the traces,
CP-LEA can precompute Z and its rank. The row reductions of Z by Gauss Elimination
can also be stored beforehand. In the attack process, the prestored operational steps can
be applied to the trace vector vi to calculate r(Z | vi). Algorithm 2 describes the detailed
procedures of CP-LEA. It requires a reverse function G and N nb-bit chosen inputs z(j)

for 1 ≤ j ≤ N . The algorithm contains the three processes as follows.

Algorithm 2 The procedure of CP-LEA
Input: na, nc (na, nc ≤ n): the vector space of the zero input values

nb = n− na − nc: the vector space of the chosen inputs (nb ≤ n)
c: an n-bit constant vector
N inputs z(j) ∈ {0, 1, · · · , 2nb − 1} for 1 ≤ j ≤ N
r(Z): the rank of the coefficient matrix Z
R(Z): the steps of the row reductions of Z
a reverse function G : (Fn

2 )2 7→ (Fn
2 )2

Output: a set of the probably correct keys K′
1: K′ ← ∅
2: kmax ← 0
3: for each k ∈ K do . each key guess
4: kcount ← 0
5: for j ← 1, N do . chosen plaintexts
6: v(j) = (v1, v2, · · · , vt)← Ek∗(Gk(Na ‖ z(j) ‖ Nc, c)) . computation traces
7: for i← 1, t do . each sample of traces
8: for j ← 1, N do
9: {vi} ← (v(j))i

10: vi ← R(Z)⇒ r(Z | vi) . row reduction on vi

11: if r(Z) ≥ r(Z | vi) then . solvable linear system
12: kcount ← kcount + 1
13: if kcount > kmax then . the maximum number of solvable linear systems
14: kmax ← kcount
15: K′ ← {k}
16: if kcount = kmax then
17: K′ ← K′ ∪ {k}
18: return K′

• Traces collection. For each key guess k, CP-LEA encrypts N chosen plaintexts (com-
puted by N chosen inputs z(j)) and collects the corresponding t-sample computation
traces v(j) = (v(j)

1 , v
(j)
2 , · · · , v(j)

t ). The time complexity of this process is O(|K| ·N),
where K is the key space and |K| denotes the number of key candidates.
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• Computation of linear systems. CP-LEA computes a linear system of the coordinates
of the chosen inputs and the trace vectors. For different key guesses and each sample
of traces, CP-LEA needs to verify the solvability of the linear equations Z · a = vi.
Since the row reductions of the coefficients are precomputed, the maximum number
of the operational steps for calculating r(Z | vi) are N · (nb + 1). Thus, this process
has the time complexity O(|K| · t ·N · (nb + 1)).

• Searching for the solvable linear systems. For each key guess, CP-LEA computes
the number of solvable linear systems. It selects the key guess with the computed
maximum number as the correct candidate. This process has the time complexity
O(|K|).

Based on the above analysis, the time complexity of CP-LEA depends on the process
of the computation of linear systems. Due to the partial key guess phase, CP-LEA
needs to iterate n/nb times to recover the round key. Thus, the total time complexity is
O(n/nb · |K| · t ·N · (nb + 1)).

Non-Linear Encoding. To deal with degree-d (d ≤ nb) non-linear encoding, we extend
LEA as a higher-degree attack which is called higher-degree encoding analysis (HDEA).
Similar to CP-HDCA, a degree-d CP-HDEA computes all the degree-l (2 ≤ l ≤ d)
extensions of the bits of the chosen input z(j). With the original input (Z(j)

1 , Z
(j)
2 , · · · , Z(j)

nb ),
we can obtain the degree-d extended bits

Z(j)
d = {1, Z(j)

1 , Z
(j)
2 , · · · , Z(j)

nb
, Z

(j)
1 Z

(j)
2 , · · · , Z(j)

nb−1Z
(j)
nb
, · · · , Z(j)

nb−d+1 · · ·Z
(j)
nb−1Z

(j)
nb
}.

The cardinality of the set Z(j)
d is p =

(
nb

0
)

+
(

nb

1
)

+ · · ·+
(

nb

d

)
. Since EC is a degree-d

function of the chosen inputs z(j), the trace value y = EC(b) can be represented by some
(unknown) linear combinations of Z(j)

d . Thus, the ANF of yi can be represented as follows.

yi(z(j)) = a0 ⊕ a1Z
(j)
1 ⊕ a2Z

(j)
2 ⊕ · · · ⊕ ap−1Z

(j)
nb−d+1 · · ·Z

(j)
nb−1Z

(j)
nb
,

where a0, a1, · · · , ap−1 are the coefficients over F2. Consequently, a degree-d CP-HDEA
can solve the following linear equations.
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Degree-d CP-HDEA computes a linear system of the degree-d extension of the input

coordinates and the trace vectors. For different key guesses and each sample of traces,
CP-HDEA needs to verify the solvability of the linear equations Z · a = vi. Since the row
reductions of the coefficients are precomputed, the maximum number of the operational
steps for calculating r(Z | vi) are N · p. Thus, the time complexity for the computation of
linear systems will be O(|K| · t ·N · p).

6 Experimental Results and Comparisons
6.1 Simulations
CP-CA can be instantiated with different parameters. For block size 2n, CP-CA constructs
N chosen inputs as (Na ‖ z ‖ Nc, c) where Na and Nc represent na-bit (na < n) and
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nc-bit (nc < n) zero values, respectively. The input c is an n-bit constant. The chosen
input z is an nb-bit (nb = n− na − nc) value. Table 2 illustrates the feasible parameters
of CP-DCA, CP-LEA, and degree-2 CP-HDEA. The CP-DCA/LEA and CP-HDEA focus
on counteracting the affine and quadratic encodings, respectively. In the partial key guess
and verification phases, the input c is fixed as a zero value such that c = 0. Contrarily,
the input c is fixed by a non-zero value 1 in the round key verification phase. Since both
the partial key guess and the round key verification phases have a nibble sliding window
with nb = 4, the two phases choose the input z and guess the key with nibble size. The
nb = 8 in the partial key verification phase implies that the chosen input has a byte size.
CP-DCA computes the correlation between the chosen intermediate values and traces
while CP-LEA/HDEA constructs a (higher-degree extended) linear system to recover the
mapping from the chosen intermediate values to a part of the traces. To increase the
capability with more traces, CP-DCA enumerates the chosen inputs such that N = 2nb .
Based on the Gauss Elimination, we suggest using the chosen inputs z for CP-LEA and
CP-HDEA in Table 2, which reduces the number of chosen inputs from the full space Fnb

2 .
Since the row reduction of r(Z | vi) can be precomputed, the operation times of the Gauss
Elimination can be computed precisely instead of the maximum times N · (nb + 1) for
affine encoding and N · p for non-linear encoding.

Table 2: The parameters of CP-DCA, CP-LEA, and degree-2 CP-HDEA.

Attack

Partial Key Guess Partial Key Verification
(Round Key Verification)

nb = 4 nb = 8
c N z Gauss c N z Gauss

CP-DCA

0 (1)

16 0− f -

0

256 00− ff -

CP-LEA 6 0, 8, 4, 2, 1, f 9 10 0, 80, 40, 20, 10 17
8, 4, 2, 1, ff

Degree-2
12

0, 8, 4, 2, 1, c
34 38

0, 80, 40, 20, 10

151
CP-HDEA a, 9, 6, 5, 3, f

8, 4, 2, 1, c0
a0, 90, 88, 84, 82
81, 60, 50, 48, 44
42, 41, 30, 28, 24
22, 21, 18, 14, 12

11, c, a, 9, 6,5, 3, ff

To verify our theoretical analysis, we perform the simulations of CP-DCA, CP-LEA,
and CP-HDEA against the 32/64/128-bit encoded function F ′k∗ (refer to Figure 5) with
affine output encodings. The random encodings are generated by the optimized white-box
matrix library WBMatrix [TGS+22]. Table 3 depicts the attack results. Three attack
phases of CP-CA have the maximum number |K|max and the minimum number |K|min of
key guesses. Consequently, the round key verification phase can reduce the number of
key candidates to 1, which indicates a successful key recovery. The symbol tmin refers
to the minimum length of computation traces. It implies that CP-CA can extract the
correct key with at least tmin-bit intermediate leakage. Compared with CP-DCA, CP-LEA
requires fewer samples in the traces to distinguish the correct key. Based on tmin, nb, |K|max,
N , and the operation times of Gauss Elimination, we can precisely compute the time
complexity of the attack phases. The time complexity in Table 3 refers to the maximum
complexity among the three phases, which can be represented as the overall complexity
of the corresponding CP-CA attack. The time complexity of CP-DCA depends on the
partial key verification phase while the partial key guess phase of CP-LEA has the highest
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time complexity. The experimental results reveal that the CP-DCA against the simulated
target functions with the block sizes from 32 to 128 requires the time complexities from
225.58 to 231.70. The time complexities of CP-LEA against the simulated target functions
with the block sizes from 32 to 128 are from 212.17 to 215.75.

Table 3: Simulated CP-DCA and CP-LEA against affine encoding.

Attack
Block

tmin

Partial Key Round Key Time
Size Guess Verification Verification Complexity

|K|max |K|min |K|max |K|min |K| Recovery

CP-DCA
32 32 48

16
12∗

4
4

1
225.58

64 64 80 20∗ 9 228.32

128 128 208 52∗ 24 231.70

CP-LEA
32 4 32∗

16 8 4 4 1
212.17

64 64∗ 214.17

128 6 215.75

∗ The attack phase corresponding to this number of key candidates has the highest time complexity.

6.2 Practical CP-CA Attacks
Implementations. The authors of self-equivalence [VRP22] and implicit white-box ARX
ciphers [RVP22] provide the open-source codes to generate the white-box implementations
of SPECK block cipher. We instantiate the SE-SPECK2 with the sizes 32/K64, 48/K96,
64/K128, 96/K144, and 128/K256. Specifically, the scripts of IF-SPECK3 only support for
the sizes 32/K64, 64/K128, and 128/K256. Since the compilation of IF-SPECK128/K256
requires a significant amount of time, we only instantiate IF-SPECK32/K64 and IF-
SPECK64/K128. Particularly, IF-SPECK can be implemented with affine or affine-
quadratic self-equivalence. Thus, it can be constructed with quadratic, cubic, and quartic
implicit round functions. Table 4 illustrates the performance of the implementations. We
note that the degree in the table refers to the degree of the implicit round function. The
abbreviation SE32 (resp. IF32) represents SE-SPECK32 (resp. IF-SPECK32) while K64
refers to a key size 64. The results are measured with an Intel Core i7-11800H processor
@2.30GHz and 40GB RAM. The results reveal that IF-SPECK requires more computational
resources than SE-SPECK. Moreover, a higher degree of the implicit function will increase
memory and time costs.

Attack Results. To validate the CP-CA, we mount the CP-DCA, CP-LEA, and CP-
HDEA attacks against SE-SPECK and IF-SPECK. Because of the impractical time
complexity of CP-HDCA on breaking the quadratic encoding, we only mount the CP-DCA
on attacking the affine encoded implementations. Table 5 depicts the practical attack
results. The abbreviations D2, D3, and D4 represent the degrees 2, 3, and 4 of the implicit
round functions in IF-SPECK respectively. The symbol tmin represents the minimum
length of computation traces while |k|max and |k|min refer to the maximum and minimum
numbers of the key guesses, respectively. Particularly, since the modular addition has sparse
affine self-equivalences, CP-DCA cannot directly recover the secret key of SE-SPECK. By
applying an extra random affine encoding to the output traces, CP-DCA can successfully
extract the secret key. The overall time complexity of the round key recovery of CP-DCA
and CP-HDEA is related to the partial key verification phase while the one of CP-LEA

2https://github.com/jvdsn/white-box-speck
3https://github.com/ranea/whiteboxarx

https://github.com/jvdsn/white-box-speck
https://github.com/ranea/whiteboxarx
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Table 4: Performance of SE-SPECK and IF-SPECK.

Cipher Encoding Degree Source Code Binary Size RAM Execution
Size (MB) (MB) (MB) Time (ms)

SE32/K64

affine -

0.08 0.04 1.11 0.01
SE48/K96 0.18 0.07 1.17 0.03
SE64/K128 0.35 0.13 1.27 0.05
SE96/K144 0.83 0.29 1.35 0.15
SE128/K256 1.70 0.57 1.74 0.23

IF32/K64
affine 2 0.16 0.15 3.08 2.43

quadratic 3 1.85 1.82 5.30 11.63
4 17.45 17.41 24.43 83.33

IF64/K128
affine 2 1.26 1.26 4.70 18.87

quadratic 3 35.44 35.12 45.10 166.67
4 691.11 690.09 788.20 2, 390.00

depends on the partial key guess phase. The results demonstrate that SE-SPECK and
IF-SPECK are vulnerable to the CP-CA attacks. The time complexities of CP-DCA
against SE-SPECK with the block sizes from 32 to 128 are from 225.58 to 231.70 while
defeating IF-SPECK32/64 with affine encoding has the time complexities 225.58 and 228.32.
The time complexities of CP-LEA against SE-SPECK with the block sizes from 32 to 128
are from 214.17 to 218.17 while CP-LEA can break affine encoded IF-SPECK32/64 with the
time complexities 213.17 and 214.17. The IF-SPECK32/64 with quadratic self-equivalence
can be defeated by the degree-2 CP-HDEA with the time complexities from 216.24 to 218.24.

6.3 Comparisons
Comparison between CP-CA and Adaptive SCA. CP-CA focuses on the computation
analysis between the chosen inputs (also the chosen intermediate values) and the traces.
It is different from the adaptive SCA [KB07,VS10], which applies the modeling analysis
related to the plaintexts. Without loss of generality, our proposed CP-CA is independent
of the existing adaptive SCA techniques. Specifically, the reverse function in CP-CA
seems similar to the adaptive chosen-plaintext phase in the adaptive side-channel analysis
(ASCA) [TGS+21]. However, the procedures and the principles of the two attacks are
substantially different. Figure 13 illustrates the flowcharts of CP-CA and ASCA. The
detailed differences are compared as follows.

• Different procedures. CP-CA first constructs a reverse function and obtains the
required plaintexts by choosing the inputs to the reverse function. CP-CA then
mounts the computation analysis on the collected traces with the obtained plaintexts.
Differently, ASCA first collects and analyzes some intermediate values by invoking
the cryptographic algorithm with random plaintexts. Subsequently, ASCA chooses
the computed plaintexts and encrypts them again to mount an SCA attack on the
cryptographic algorithm.

• Different principals. CP-CA constructs a reverse function to cancel the first few round
functions of the cryptographic algorithm. CP-CA aims to reduce the complexity of
the enumeration on the large affine/non-linear encoding. Diversely, ASCA chooses
some plaintexts by analyzing the intermediate values of the cryptographic algorithm.
It intends to bypass some countermeasures such as masking and redundancy against
the SCA with some properties of the chosen plaintexts.
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Table 5: Practical CP-DCA, CP-LEA, and CP-HDEA against SE-SPECK and IF-SPECK.

Attack Cipher tmin

Partial Key Round Key Time
Guess Verification Verification Complexity

|K|max |K|min |K|max |K|min |K| Recovery

CP-DCA

SE32/K64∗ 32 48

16

12∗∗

4

4

1

225.58

SE48/K96∗ 48 5 226.75

SE64/K128∗ 64 80 20∗∗ 9 228.32

SE96/K144∗ 96 229.49

SE128/K256∗ 128 208 52∗∗ 24 231.70

IF32/K64/D2 32 48 12∗∗ 4 225.58

IF64/K128/D2 64 80 20∗∗ 3 9 228.32

CP-LEA

SE32/K64 16 32∗∗

16 8 4 4 1

214.17

SE48/K96 24
64∗∗

216.34

SE64/K128 32 217.17

SE96/K144 48 218.34

SE128/K256 64
32∗∗

218.17

IF32/K64/D2 8 213.17

IF64/K128/D2 214.17

CP-HDEA

IF32/K64/D3

8
64

16
32∗∗

16 8 1
216.24

IF32/K64/D4
IF64/K128/D3 217.24

IF64/K128/D4 128 64∗∗ 218.24

∗ The collected computation traces are encoded by an extra random affine mapping.
∗∗ The attack phase corresponding to this number of key candidates has the highest time complexity.

cryptographic algorithm

plaintexts

SCA attack

analysis of 

intermediate values

adaptive chosen

ASCA

computation analysis

cryptographic algorithm

chosen inputs

reverse function

CP-CA

intermediate values

plaintexts

Figure 13: The comparison between CP-CA and ASCA.
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Comparison between CP-LEA and ADCA. Although CP-LEA is a reformulation of
ADCA, there are also some differences between CP-LEA and ADCA as follows.

• New reverse function. ADCA targets the encoded LUTs for Sbox-based white-box
ciphers in the CEJO framework. It computes the inputs x′ = S−1(x) + k (in byte
level) for a key guess k. Differently, CP-LEA aims to attack the ARX-based white-
box ciphers with large encoding and modular addition structures. It constructs a
reverse function (in block size) by some reverse steps of the algorithm to choose the
plaintexts.

• New chosen-plaintext attack. We note that CP-LEA has a chosen-plaintext process.
The chosen plaintexts help to reduce the large space of input and encoding, which
implies a feasible computation analysis on ARX-based white-box ciphers. On the
contrary, ADCA does not require any particular plaintexts.

• Partial key guess. CP-LEA has the partial key guess phase to reduce the space of
key guesses while ADCA needs to enumerate the key candidates over the key space.

• No algebraic degree detection. CP-LEA focuses on the linear mappings from the
chosen intermediate values to a part of the traces. It distinguishes the correct key
with the most solvable linear systems. Different from CP-LEA, ADCA detects the
algebraic degrees of the computed mapping and counts the number of degrees that
are no more than a specific value d.

Comparison between CP-LEA and LDA. By exploiting the technique of LDA, the
algebraic attack [BLU23] demonstrated the vulnerability of IF-SPECK. The key difference
between CP-LEA and LDA is that CP-LEA targets the linear mapping from the unencoded
intermediates to a sample of traces, while LDA maps the encoded output to the unencoded
intermediates reversely. Hence, CP-LEA can analyze the bits in the traces separately while
LDA must locate the whole output bits. The detailed differences between CP-LEA and
LDA against SE-SPECK and IF-SPECK are described as follows. Figure 14 also illustrates
these differences.



(𝑧ଵ, 𝑧ଶ, ⋯ , 𝑧ଶ) 𝑦

encoding 𝐶 ∘ 𝐵ିଵ with unknown degree

2n bits 1 bit

ିଵ



(𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦ଶ)𝑧

linear/quadratic encoding 𝐵 ∘ 𝐶ିଵ

2n bits1 bit

CP-LEA(HDEA) LDA

Figure 14: The comparison between CP-LEA and LDA.

• Different target functions. LDA focuses on the mapping from the outputs of the
target function to its intermediate values. This mapping is the inverse encoding (i.e.,
decoding) EC−1 = B ◦ C−1 of which the degree depends on the affine/quadratic
encoding B. It constructs a linear/quadratic system between the 2n-bit encoded
output y = (y1, y2, · · · , y2n) and an intermediate value zi ∈ F2. The sensitive value
zi is calculated through the public function F and some guessed key bits k from
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the input x. For the correct key, a unique mapping will be determined from y to
zi. Diversely, CP-LEA focuses on the mapping from the intermediate values of the
target function to output traces. This mapping is the encoding EC = C ◦ B−1 of
which the degree is unknown when the quadratic encoding B is applied. It calculates
the 2n-bit z = (z1, z2, · · · , z2n) of the modular addition based on a partial key guess
k. Subsequently, it focuses on the (reduced) linear mapping from z to an encoded
output bit yi. CP-LEA(HDEA) computes a (higher-degree extended) linear system
between the chosen input z and the output bit yi to distinguish the correct key.

• Different windows. LDA needs to locate a w-size (w ≥ 2n) window of the intermediate
values which contain all the bits of the encoded output y. It cannot recover the
key with limited access to the encoded output y. Contrarily, CP-LEA does not
require full access to y. It focuses on a t-size (t ≤ w) window of y, which implies
that CP-LEA still can recover the correct key when analyzing the partial bits of y.

• Different round key candidates. Based on the attack results of the algebraic attack
[BLU23], LDA cannot uniquely recover the round key of IF-SPECK. It obtains 4
candidates for a round and needs to determine the correctness in the next-round
key recovery. Thus, it is required to iterate the attack over 5 rounds for the master
key recovery. Differently, CP-LEA has three attack phases among which the round
key verification phase can uniquely distinguish the correct key. Hence, CP-LEA can
extract the master key by iterating the attack over 4 rounds instead of 5 rounds.

6.4 Different Constructions and Possible Countermeasures
CP-CA performs a modeling analysis on the computation traces which are the encoded
sensitive values of the cryptographic algorithm. It focuses on the round outputs instead
of the polynomials of the implicit function. The different constructions of an implicit
function, such as the generation of P (x, y) = 0 cannot enhance the security against CP-CA.
For SE-SPECK, it is vulnerable to the algebraic attack which leverages some properties
of the sparse matrix when generating the affine self-equivalences. Following the gray-box
attack context, CP-CA has no access to the generation of white-box implementations.
The sparse affine self-equivalence of SE-SPECK has been abstracted as a random affine
encoding. Thus, it is a more general case for SE-SPECK. A specific computation analysis
for considering the properties of the sparse affine self-equivalence is left as future work.

Similar to ADCA, CP-HDEA is a higher-degree computation analysis against the non-
linear self-equivalence in the implicit function framework. By fixing most parts of the inputs
as constant, a higher-degree CP-HDEA enjoys a lower time complexity than LDA. For
any higher-degree non-linear encoding, the attack degree d of CP-HDEA satisfies d ≤ nb,
where nb is the size of chosen inputs (nb = 4/8 in practice). Hence, even higher-degree
self-equivalences might be still vulnerable to higher-degree CP-HDEA. Since the implicit
function represents the round function as multivariate binary polynomials, it is possible
to construct a multi-round implicit function. For a multi-round key recovery, CP-CA
needs to search the round keys in a larger space with a higher time complexity. Hence,
the multi-round implicit function might be a possible countermeasure to resist CP-CA.
However, it is still challenging to represent the multi-round functions as a low-degree
implicit function thus we left it for future work.

6.5 Application to CRAX Block Cipher
CRAX is a lightweight 64-bit block cipher that applies a 64-bit ARX-based Sbox Alzette
[BBdS+20] and a 128-bit secret key. To explore the feasibility of CP-CA against another
ARX cipher, we discuss an attack on the self-equivalence (SE-CRAX) and implicit white-box
CRAX (IF-CRAX) implementations. Figure 15 depicts the structures of the reverse function
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Gk0,k1 and the encoded function F ′k∗0 ,k∗1
, where (k0,k1) ∈ (F32

2 )2 and (k∗0 , k∗1) ∈ (F32
2 )2 denote

the key guess and the correct key, respectively.

𝑥0

𝑥1

𝐸𝐶

𝑠0

𝑠1

encoded function 𝐹𝑘0∗ ,𝑘1∗
′

𝑧0

𝑧1

⊟

⋘ 31

⊕

𝑘0



reverse function 𝐺𝑘0,𝑘1

plaintexts traceschosen inputs

⊞



𝑡0

𝑡1⊕

𝑘1

⊕

𝑘0
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⊕

𝑘1
∗

⋙ 31

Figure 15: The reverse function of CP-CA against SE-CRAX and IF-CRAX.

With the composition of Fk∗0 ,k∗1
and Gk0,k1 , the sensitive values (t0, t1) can be derived

from the inputs (z0, z1) as follows.

Fk∗0 ,k∗1
◦Gk0,k1 : (F32

2 )2 7→ (F32
2 )2 : Fk∗0 ,k∗1

◦Gk0,k1(z0, z1) = (t0, t1)
t1 = ((z1 ≪ 31)⊕ k1 ⊕ k∗1)≫ 31

= z1 ⊕ (∆k1 ≫ 31) (3)
t0 = ((z0 � z1)⊕ k0 ⊕ k∗0)� t1

= ((z0 � z1)⊕∆k0)� (z1 ⊕ (∆k1 ≫ 31)) (4)

For a correct key guess, the variables in Eq. (3) and Eq. (4) can be canceled out as

t1 = z1, t0 = (z0 � z1)� z1 = z0.

The unencoded intermediate values (t0, t1) are equal to the inputs (z0, z1). For an incorrect
key guess, the unencoded sensitive values (t0, t1) are computed by Eq. (3) and Eq. (4). It
is a random function for different key candidates (k0, k1) 6= (k∗0 , k∗1).

Partial Key Guess. Similar to the attack process on breaking SE-SPECK and IF-SPECK,
CP-CA guesses a nibble key (24 = 16 key candidates) and constructs the corresponding
reverse function to distinguish the possible correct key. Since the round function of CRAX
contains two 32-bit subkeys, CP-CA needs to recover the k0 and k1 separately. For
extracting k0, CP-CA fixes z0 as 0 and removes the subtraction z0 � z1, such that Eq. (3)
and Eq. (4) can be transformed as

t1 = z1 ⊕ (∆k1 ≫ 31),
t0 = ∆k0 � (z1 ⊕ (∆k1 ≫ 31)) .

CP-CA fixes the key guess k1 as a constant and focuses on the partial key enumeration on
k0. There is a sliding window with nibble size in both the key guess k0 and the chosen
input z1. Therefore, it recovers the partial key from the least significant nibble to the most
significant one. For recovering k1, CP-CA fixes z1 as 0, such that Eq. (3) and Eq. (4) can
be transformed as

t1 = ∆k1 ≫ 31,
t0 = (z0 ⊕∆k0)� (∆k1 ≫ 31).

CP-CA fixes the key guess k0 as a constant and focuses on the partial key enumeration
on k1. By applying the computation analysis between the chosen input z0 and the traces,
CP-CA can recover a set of possible correct key candidates of k1. Specifically, the extracted
key k1 needs to be reset through a left circular shift by 31.
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Partial Key Verification. This phase is equal to the attacks on SE-SPECK and IF-
SPECK. It constructs a sliding attack window on the chosen input and the key guess with
byte size to reduce the key candidates obtained from the partial key guess phase.

Round Key Verification. By obtaining the reduced key candidates of k0 and k1, CP-CA
fixes the input z1 as a non-zero constant value and chooses the nibble input z0 to further
distinguish the correct key among {k0, k1}.

Attack Results. We implement SE-CRAX and degree-2/3 IF-CRAX by modifying the
open-source code of SE-SPECK and IF-SPECK. Table 6 illustrates the attack results
of CP-DCA, CP-LEA, and CP-HDEA against SE-CRAX and IF-CRAX. The partial
key verification phase of CP-DCA on SE-CRAX returns 9 and 5 candidates for k0 and
k1, respectively while attacking IF-CRAX recovers 17 and 5 candidates for k0 and k1,
respectively. The same phase of CP-LEA on SE-CRAX and IF-CRAX/D2 computes 8 and
4 candidates for k0 and k1, respectively while CP-HDEA against IF-CRAX/D3 obtains
32 and 8 candidates for k0 and k1, respectively. The round key verification phases of
CP-DCA and CP-LEA/HDEA finally reduce the 45, 85, 32, and 256 key candidates to 8
ones. Similar to the algebraic attack on IF-SPECK, CP-CA on SE-CRAX and IF-CRAX
leaves with 8 candidates which contain the correct one after the round key recovery. The
master key will be recovered by iterating the attack over 5 rounds.

Table 6: Practical CP-DCA, CP-LEA, and CP-HDEA against SE-CRAX and IF-CRAX.

Attack Cipher tmin

Partial Key Round Key Time
Guess Verification Verification Complexity

|K|max |K|min |K|max |K|min |k0| |k1| |K| Recovery

CP-DCA SE-CRAX∗ 64 48 16 25∗∗ 6 9 5 45 8 228.64

IF-CRAX/D2 64 80 41∗∗ 17 5 85 229.36

CP-LEA SE-CRAX 32 32∗∗ 16 16 4 8 4 32 8 216.17

IF-CRAX/D2 12 214.75

CP-HDEA IF-CRAX/D3 9 64 16 64∗∗ 16 32 8 256 8 218.41

∗ The collected computation traces are encoded by an extra random affine mapping.
∗∗ The attack phase corresponding to this number of key candidates has the highest time complexity.

To the best of our knowledge, there are no other publicly available ARX-based white-box
ciphers except for the SPECK block cipher. It is an elaborate work to apply the self-
equivalence and implicit function frameworks to other ARX ciphers, such as LEA [HLK+13],
SPARX [DPU+16], and CHAM [KRK+18]. Specifically, the key problem is to cancel
the encodings when the round function has more than two branches and to merge the
self-equivalences when the round function consists of multiple modular additions. The
constructions and the CP-CA attacks of the other ARX-based white-box ciphers are left
as future work.

7 Conclusion
This paper studied the computation analysis against ARX-based white-box ciphers. We
first analyzed the encoded structure of SE-SPECK and IF-SPECK. Subsequently, its
resistance to DCA and ADCA attacks has been discussed. The analysis reveals that the
large spaces of input, key candidate, and encoding can practically mitigate DCA attacks.
To reduce the complexity, we introduced the concept of a reverse function and proposed
a new CP-CA attack method with two instances of CP-DCA and CP-LEA. CP-CA can
reduce the large affine/non-linear encoding into a small one by elaborately choosing the
intermediate values. The theoretical and experimental results demonstrate that both
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self-equivalence and implicit SPECK implementations are vulnerable to the CP-DCA and
CP-LEA attacks.

This is the first attempt to evaluate the security of SE-SPECK and IF-SPECK against
computation analysis. It is left as future work to explore the possibility of constructing a
multi-round implicit function as a countermeasure against CP-CA. Moreover, it is also a
challenge to evaluate the resistances of other ARX-based white-box ciphers with multiple
branches and modular additions to the CP-CA attacks.
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