
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 1, pp. 475–496. DOI:10.46586/tches.v2025.i1.475-496

Blind-Folded: Simple Power Analysis Attacks
using Data with a Single Trace and no Training

Xunyue Hu, Quentin L. Meunier and Emmanuelle Encrenaz

Sorbonne Université, LIP6, CNRS, 4 Place Jussieu 75005 Paris
{xunyue.hu,quentin.meunier,emmanuelle.encrenaz}@lip6.fr

Abstract. Side-Channel Attacks target the recovery of key material in cryptographic
implementations by measuring physical quantities such as power consumption during
the execution of a program. Simple Power Attacks consist in deducing secret informa-
tion from a trace using a single or a few samples, as opposed to differential attacks
which require many traces. Software cryptographic implementations usually contain
a data-independent execution path, but often do not consider variations in power
consumption associated to data. In this work, we show that a technique commonly
used to select a value from different possible values in a control-independant way
leads to significant power differences depending on the value selected. This difference
is actually so important that a single sample can be considered for attacking one
condition, and no training on other traces is required. We exploit this finding to
propose a single-trace attack without any knowledge gained on previous executions,
using trace folding. We target the two modular exponentiation implementations
in Libgcrypt, getting respectively 100% and 99.998% correct bits in average on 30
executions using 2,048-bit exponents. We also use this technique to attack the scalar
multiplication in ECDSA, successfully recovering all secret nonces on 1,000 executions.
Finally, the insights we gained from this work allow us to show that a proposed
countermeasure from the literature for performing the safe loading of precomputed
operands in the context of windowed implementations can be attacked as well.

Keywords: Simple Power Attack · Modular Exponentiation · ECDSA · Constant-
Time Implementation · Side-Channel Attacks

1 Introduction
Side-Channel Attacks (SCA) target the recovery of key material in cryptographic im-
plementations by measuring physical quantities such as power consumption during the
execution of the program.

There are two major deterministic causes which influence the power consumption:
the instruction executed by a program and the data manipulated by these instructions.
Instructions have a major role in the power dissipated. In fact, looking at a power trace,
it is possible to determine which path of instructions the program has followed, leading
to the so called Simple Power Attacks (SPA). For this reason, sensitive programs such as
cryptographic primitives are now always designed to have an instruction execution trace
which is always the same, and in particular independent from the inputs.

Data, on the other hand, have a slighter effect on power consumption, and exploiting
this power difference often requires to capture a lot of traces and perform differential
attacks known as Differential Power Analysis attacks (DPA) such as the Correlation Power
Analysis attack (CPA) [MOP08]. In this article, we show that it is possible to use data
power consumption to perform SPA using single sample values, taking advantage of the

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-07-15 Accepted: 2024-09-15 Published: 2024-12-09

https://doi.org/10.46586/tches.v2025.i1.475-496
mailto:xunyue.hu@lip6.fr,quentin.meunier@lip6.fr,emmanuelle.encrenaz@lip6.fr
http://creativecommons.org/licenses/by/4.0/

476 Simple Power Analysis Attacks using Data with a Single Trace and no Training

variation in the Hamming Weight of the data. These attacks allow to recover some secret
values based on a single trace. This article makes three contributions:

• We identified that a common way of implementing constant time cryptographic
algorithms leads to a significant weakness. More precisely, the masking technique
used to assign one of two values to a variable in a control-independant way leads
to significant power differences depending on the chosen value. We additionally
identified an inherent weakness specific to elliptic curve cryptography, which is due
to the point at infinity.

• We show on two widespread cryptographic implementations how to exploit this
data-related power consumption to perform a SPA: on the modular exponentiation in
Libgcrypt and on a secure elliptic curve implementation for performing a signature.
The attack requires a single trace to recover directly the full secret, without any
training or profiling phase. The only prerequisite is the identification of the loop
performing the computation of the masking technique.

• Using the weaknesses identified in the proposed attacks, we show how to break a
countermeasure proposed by Saito et al. [SIUH22] to safely load a precomputed
operand in a windowed modular exponentiation.

We underline that the attack presented in this work is of practical relevance. Indeed,
most if not all constant time implementations use a masking technique to select one value
to keep among two, and this countermeasure, while primarily targeting cache attacks, is
commonly used against side-channels as well, in particular on embedded systems [GB23].

The rest of the article is organized as follows: section 2 describes some background
related to modular exponentiation and its usage in RSA, and to ECDSA. These two
algorithms are used in the following as attack targets. Section 3 presents some works
related to power attacks on cryptographic implementations, and highlights differences
of our work with previous works, especially regarding the attack hypotheses. Section 4
presents our attack on the modular exponentiation, and section 5 our attack on ECDSA.
Section 6 presents how the attack could be extended on other architectures and libraries,
and its limitation. In section 7, we show that the proposed operand loading process
from [SIUH22] does not prevent the exponent recovery. Finally, section 8 concludes and
gives some perspectives for future works.

2 Background

2.1 Modular Exponentiation
2.1.1 Usage in RSA

Modular exponentiation is a critical operation in a cryptographic context, as it is often
applied to secret data. More precisely, the RSA asymmetric encryption scheme uses
modular exponentiation with the secret key as exponent in two contexts: for deciphering a
message, and for signing a message.

In the textbook RSA scheme, a private key is made of values (p, q, d), a public key is
(e, N): p and q are two large prime numbers and N = pq, d = e−1 mod (p − 1)(q − 1)
where e is a small value and e has to be relatively prime with (p− 1)(q − 1). Signature
and verification of a message m are expressed as:

s = md mod N
m = se mod N

X. Hu et al. 477

in which s is the signature. RSA is often implemented using the so-called CRT-RSA
scheme for efficiency reasons. In this scheme, the owner of the private key computes:

dp = d mod (p− 1)
dq = d mod (q − 1)
qp = q−1 mod p

The signing operates as follows:

sp = mdp mod p
sq = mdq mod q

s = (sp − sq)qpq + sq mod N

We can notice that the secret exponent d is no longer used as exponent; however, recovering
dp and dq from the corresponding exponentiations still allows to recover d: we can then
compute s′p = mdp mod N , and since we have s = md mod N , we can recover:

p = gcd(s− s′p, N)
q = N/p

d = e−1 mod (p− 1)(q − 1)

Using the notation a ≡ b mod n for the congurence of a and b modulo n:

Since s = md mod N

we have s ≡ md mod p

∃ k such that s ≡ mdp+k(p−1) mod p

≡ mdp(m(p−1))k mod p

Euler’s Theorem ≡ mdp(1)k mod p

≡ mdp mod p

∃ a such that s = mdp + ap (1)

Similarly s′p = mdp mod N

s′p ≡ mdp mod p

∃ b such that s′p = mdp + bp (2)

(1)− (2) =⇒ s− s′p = mdp + ap−mdp − bp

s− s′p = (a− b)p

So (s− s′p) and N have a common factor p which is their greatest common divisor since
N = pq and p and q are prime numbers.

In Libgcrypt’s RSA implementation, a random protection has been added, known as
blinded exponent: a random number r is generated for each calculation and the expression
sp = mdp+r(p−1) mod p is computed instead of sp = mdp mod p. This does not change
the value of sp, but the exponent of the operation is dp + r(p − 1), which means that
the "secret" value we recover is actually dp + r(p− 1), and the same for dq. However, as
detailed in Vergnaud’s article [Ver20], when we have the full value of dp + r(p− 1), we can
use RSA’s own properties to find p, and the same for q. Even if we only find a part of
dp + r(p− 1), we can still find the complete key using lattice, as described in [MV19].

478 Simple Power Analysis Attacks using Data with a Single Trace and no Training

2.1.2 Implementations

Traditional modular exponentiation implementations follow the algorithm shown in Al-
gorithm 1. In this algorithm, the exponent is traversed bit by bit; when the bit is 0, the
current result is squared, and when it is 1, the current result is squared then multiplied.
Obviously, recovering the sequence of operations, e.g. via a cache attack [YF14, LGS+16]
or power traces, allows to recover the exponent.

Algorithm 1 Traditional modular exponentiation. Bold variables indicate large integers.
Input: Base c, exponent d = (dk−1...d0)2, modulus N
Output: r = cd mod N

function ModularExponentiation(c, d, N)
r ← 1
for i from k − 1 to 0 do

r ← r × r mod N # Squaring
if di = 1 then

r ← r × c mod N # Multiplication
return r

To circumvent this problem, recent implementations always perform the multiplication
and store the result in a different variable, choosing at the end of the iteration which result
to keep.

Algorithm 2 Windowed modular exponentiation. Bold variables indicate large integers.
Input: Base c, exponent d = (dk−1...d0)2, modulus N , window size w
Output: r = cd mod N

function ModularExponentiation(c, d, N , w)
c0 ← 1
for i from 1 to 2w−1 do

ci ← ci−1 × c mod N # Precomputing the 2w−1 first powers in a table
r ← 1
z ← k − 1
while z ≥ 0 do

y ← max(z − w + 1, 0)
u ← (dz...dy)2
for i from 1 to z − y + 1 do

r ← r × r mod N # Squaring
r ← r × cu mod N # Multiplication
z ← y − 1

return r

Another approach, which is computationally more efficient consists in precomputing 2w

values of the base at the beginning, and then in traversing the exponent bits by groups
of w, as shown in Algorithm 2. We can see that in this version of the algorithm, the
computations are independant from the exponent value. However, since the cu loaded
depends on it, it is possible to use cache timing information to infer what the possible
values for u are. To avoid this issue, some side-channel resistant implementations load
all the elements cu, keeping as result the result of the load corresponding to the correct
window value.

However, as we will show in section 4, both the multiply always version and the
windowed version making all loads are subject to SPA when keeping or discarding the
result of a useful or useless operation.

X. Hu et al. 479

2.2 ECDSA
2.2.1 Principle

Elliptic Curve Digital Signature Algorithm (ECDSA) [JMV01] is a public-key digital
signature algorithm that is a variant of DSA. It uses elliptic curve cryptography which
relies on an elliptic curve defined over some finite field of integers Fp, Curve(a, b, p, G, n)
= x3 + ax + b mod p where p is a large prime, G is a base point on the curve that can
generate a subgroup of a large prime-order n.

The public parameters of ECDSA scheme include a description of Curve(a, b, p, G, n).
The private key d is a random positive integer less than n, the corresponding public key is
set as the point H = d ∗G. The ∗ here is the multiplication between a scalar and a point
of the curve, and d ∗G is defined by doing d times the elliptic curve’s addition of the point
G.

A signature of a message m is Sign(z, d) = (r, s), where z = hash(m) for some hash
function; r = xcoord(P), where P = k ∗ G with k a random nonce greater than 0 and
less than n generated for each signature; s = k−1(z + dr) mod n where k−1 is the inverse
of k mod n. One can then verify the signature from the public key H by computing
u = s−1z mod n, v = s−1r mod n, and checking whether xcoord(u ∗ G + v ∗ H) = r,
meaning s−1z ∗G + s−1r ∗H mod n = k ∗G.

We can see that once we find any nonce k, we can easily compute the private key
d = r−1(sk − z) mod n.

2.2.2 Implementations

Traditional implementations of ECC’s multiplication rely on traversing the bits of the scalar,
either one by one or using a window of bits for indexing a table containing precomputed
multiples of the base point.

Algorithm 3 Fixed-Window ECC Multiplication. Bold variables indicate large integers,
and variables in capital indicate EC points.

Input: Base Point G, scalar k = (kn−1...k0)2, window size w
Output: Point P = k ∗ G

function ECCMultiplication(G, k, w)
C0 ← O # O represents the point at infinity, neutral element for the addition
for i from 1 to 2w−1 do

C i ← C i−1 + G # Precomputing the first 2w−1 multiples in a table
P ← O
z ← n − 1
while z ≥ 0 do

y ← max(z − w + 1, 0)
u ← (kz...ky)2
for i from 1 to z − y + 1 do

P ← P + P # Computing 2z−y+1 ∗P
P ← P + C u # Computing (2z−y+1 + u) ∗P
z ← y − 1

return P

Algorithm 3 shows the fixed-window ECC multiplication. As for the modular expo-
nentiation, the lookup can be made constant time and indistiguishable from the loaded
value by loading each element in the precomputed table and using a mask technique to
only keep the correct value.

Yet again, as we will show in section 5, the recombination of all the loaded value can
be efficiently exploited to recover the secret nonce in a single trace without prior training.

480 Simple Power Analysis Attacks using Data with a Single Trace and no Training

3 Related Works and Discussion
Several recent works have targeted the recovery of the secret exponent in RSA and the
recovery of the secret nonce in ECDSA, often limited to the recovery of a part of the secret
bits.

In 2017, Bernstein et al. [BBG+17] proposed an attack to recover the full RSA exponent
of a non constant-time sliding window implementation of modular exponentiation, based
on the fact non constant-time implementations seek to reduce the number of multiplication
by adjusting the window depending on the location of the zeros. Following this work,
constant-time sliding window exponentiation was proposed.

In 2019, Weissbart et al. [WPB19] presented an attack of ECDSA using different
techniques of various accuracy for recovering the secret nonce. The full secret recovery is
achieved with a Convolutional Neural Network (CNN), which must be trained with around
500 traces for the complete recovery. This work has been extended in 2020 [WCPB20] in
which two different implementations of the scalar multiplication are studied: a baseline
using power consumption, and a protected implementation using electromagnetic emission
(EM). While the authors manage to break the baseline implementation with a single trace,
they make use of a CNN trained with 6400 labeled traces, while not being able to explain
the cause of the leakage.

In 2020, Lee et al. [LH20a] consider the detection of dummy operations as a multi-
label classification problem and propose a deep learning method based on CNN to solve
it, using power measures. They target an AES software implementation with dummy
loads countermeasure, and show that their method performs well compared to their
previously proposed method [LH20b]. However, their multi-label CNN is designed for
attacking this specific AES implementation, and the applicability to other cryptographic
implementations is unclear. Also using deep learning, Lei et al. presented a profiling
attack based on VGGNet, a small and deep neural network, performed on a smart-card
CRT-RSA implementation, using security countermeasures including masking and time
jittering [LLQ+20]. An ad-hoc method is applied to extract sample points from traces to
perform an effective deep learning profiling attack.

Finally, three works are closely related to the contributions we make in this article.
First, Nascimento et al. [NCOS16] attack an embedded ECC implementation with power
measures. However, there are several important differences between their work and ours:
they target the bitwise AND of the conditional copy, resulting in 4288 samples (64 iterations
* 67 samples/cycle) for determining a single data value while we use only one sample,
targeting the mask computation; they use a template attack requiring to build a model
from reference executions while we have no training phase; their success rates are not as
high the ones we obtain, showing the relevance of targeting the mask computation.

Second, Alam et al. describe an attack on ECDSA using a fixed window [AYW+21].
Their attack targets the conditional swap, a technique to conditionally swap two values
based on the condition result, using many EM samples resulting from the 80 exclusive-or
that the swap comprises. Then, it uses a classifier trained with known secret scalar values
to conclude, while giving some incorrect bits. Our work however shows that a single power
measurement is enough for determining a data value without error.

Third, Saito et al. propose a single-trace [SIUH22] attack on the GnuMP implemen-
tation of the exponentiation in RSA based on EM measures. They use a deep-learning
technique to detect dummy loads, but the approach requires a significant training phase
(more than 61 millions traces mentioned in the article), while not giving much insight on
the reason of the leakage. A countermeasure is presented in the article, which we think
does not prevent the exponent recovery. We will explain how to attack this countermeasure
in section 7.

In contrary to most of these works which rely on profiling and learning techniques, the
attack we present in this article does not need any specific training phase. The base idea is

X. Hu et al. 481

very simple, and consists in comparing the power consumption of the two different possible
values of the mask, which is almost always used in constant-time implementations. We
show that this can be used to determine the mask value without the need for a pre-training
step. As it turns out, the mask computation, which only depends on data, is sufficient to
distinguish clearly the condition using a single power measure, even with a measure tool
limited to a single sample per cycle.

4 Attacking RSA Modular Exponentiation with a SPA
This section presents our Simple Power Analysis attack on modular exponentiation. The
attack targets the recovery of the exponent bits, either bit by bit for the traditional version,
or slice by slice for the windowed version. Note that we are not interested here in the
recovery of the exponent should any error occur, and such algorithms have already been
proposed, e.g. in [SIUH22]. Besides, the attack has a very high precision and typically
produces no error.

We target implementations of the Libgcrypt library (v.1.10.3 released on the 14th

November 2023), compiled for Arm v7 and executed on an Arm Cortex-M4 integrated
on a STM32F3 board. The board used is the ChipWhispererPro board from NewAE,
measuring 4 samples per cycle for short traces, and one sample per cycle using streaming
mode for long traces [OC14]1.

4.1 Characterisation: Conditional Assignment using Masking
A common way to perform a conditional assignment is to use the so-called “masking”
technique, consisting in having two words: one containing only '0' bits, and one containing
only '1' bits, depending on the condition. A way to achieve this is presented in Algorithm 4.
It uses the fact that in this implementation, a large integer is represented as an array of
limbs, each limb being encoded on a machine word – 32 bits in our case.

Algorithm 4 Control-independant conditional assignment using masking, used for example
in Libgcrypt. Bold variables indicate large integers.
1: function SetCond(v, u, c) . if c = 0 v remains unchanged, else v gets u
2: msk0 ← wzero − c . wzero is a word containing only '0' bits
3: msk1 ← c − wone . wone is a word containing the value 1 (0b0...01)
4: for i from 0 to nlimbs − 1 do . nlimbs is the number of limbs
5: vi ← (msk0 & ui) | (msk1 & vi) . vi and ui are the ith limbs of v and u

We first tried to determine whether the computation of msk0 and msk1 leads to signifi-
cant power consumption differences depending on the value of c. For this characterisation,
we used the implementation of the SetCond function of the library. Extracting only the
masks computation lines 2 and 3 (and not the recombination line 4), we captured 1000
traces with a random value for the condition c.

The results of the captures are shown in Figure 1. On this figure, recorded traces with
a condition value of 0 are displayed in blue, while recorded traces with a condition value
of 1 are displayed in red. We can clearly see that there are some sample points for which
the power consumption distributions for the two values of c are disjoint. Thus, measuring
the power consumption at one of these sample points is sufficient to determine the value
of c, using a simple threshold to discriminate.

1All the captures and attack codes used in this work are available online at the following address:
https://largo.lip6.fr/blind-folded

482 Simple Power Analysis Attacks using Data with a Single Trace and no Training

60626466687072

0.050.10.150.2

Time

C
u
rr
e
n
t

Figure 1: Power consumption associated to the masks’ computation of the SetCond
function in Libgcrypt with 4 samples per cycle. Blue curves correspond to a condition
value of 0, while red curves correspond to a condition value of 1.

4.2 Attacking the Full Exponentiation
We used the two versions of the modular exponentation present in the Libgcrypt library:
the traditional version based on the traversal of the exponent bits, and the second one using
a sliding window. In the traditional version, for each bit of the exponent, the condition
passed to the SetCond function is the bit value, as shown in Algorithm 5.

Algorithm 5 Simplified iteration of the main loop of the traditional exponentiation
function in Libgcrypt. Bold variables indicate large integers.

. rp contains the current result
1: xp ← rp × rp . Squaring
2: xp, rp ← rp, xp . Swapping rp and xp
3: xp ← rp × b . Multiplication
4: rp ← SetCond(rp, xp, ei) . Keeping correct result depending on exponent bit ei

Algorithm 6 Simplified iteration of the main loop of the sliding window exponentiation
function in Libgcrypt, loading all precomputed values. Bold variables indicate large
integers.
1: rp ← result; . rp contains the current result
2: for i from j to 0 do . j is the number of squares
3: for k from 0 to (2w−1 − 1) do . w = 5 is the window size
4: u ← precomp[k] . precomp[k] contains base2×k+1 [pointer copy]
5: SetCond(w, u, k = e0) . w ← precomp[e0] if k = e0, e0 being the slice
6: value derived from the window value
7: SetCond(w, rp, i 6= 0) . w ← rp if i 6= 0, w ← precomp[e0] if i = 0
8: xp ← MulMod(rp, w, mp) . Square if i 6= 0, Multiply if i = 0,
9: mp is the modulus
10: rp ← xp

The implementation for the windowed version is shown in Algorithm 6. In order to
minimize the number of multiplications, the considered slice value for the exponent is not
directly the window value: the implementation first discards the trailing zeros and processes
them in the next iteration. Then, the trailing 1 is removed for the index computation:
the obtained slice value e0 is thus comprised between 0 and 15, and is used for indexing

X. Hu et al. 483

the precomp table which contains only odd powers between 1 and 31 (i.e. precomp[e0] =
base2×e0+1). In order to implement constant time, all elements in the table precomp are
loaded using iteration variable k, and using as condition for the SetCond function that k
equals e0.

As an example, if the window value is 101002, the two trailing zeros are first removed,
giving 1012. Then, the slice value e0 is obtained by removing the trailing 1, i.e. e0 = 102
= 2. The function thus copies precomp[2] = base2×2+1 = base1012 into w, ignoring other
loaded values.

Attacks on both the traditional and the windowed versions comprise the following parts:
1) Locating the Regions of Interest (ROI) corresponding to where the SetCond function
is called; 2) Determining the Points of Interest (POI) from these ROI; 3) Determining the
operations from the power consumption at the POI; 4) Reconstructing the key from the
sequence of operations.

4.3 Locating the Regions of Interest

(a) SetCond function call with
a slice value of 3

(b) SetCond function call with
a slice value of 10

(c) SetCond function call with
a slice value of 14

Figure 2: Power consumption for the windowed version where the function SetCond is
called, for three different slice values

The ROI correspond to where the SetCond function is called. Examples of such ROI
for the windowed version are shown in Figure 2. For this version, each ROI contains 17
sections, and each section contains a POI. The first 16 sections represent the calls to the
SetCond function in the inner loop and the last one represents the call to the SetCond
function outside of this loop (lines 3–7 in Algorithm 6). As for the traditional version,
ROI contain only one section since they comprise a single call to the SetCond function.

Algorithm 7 Finding all ROI in the trace using a pattern
1: function FindROI(pattern, trace)
2: roi ← []
3: for i from 0 to (nb_samples − len(pattern) − 1) do
4: diff ← 0
5: for j from 0 to (len(pattern) − 1) do
6: diff ← diff + abs(pattern[j] − trace[i + j])
7: if (diff < threshold) then
8: roi.append(i)
9: return roi

For both versions, the offsets between two consecutive ROI are not the same, as
some operations depend on the data values. For the windowed version, it is due to the
different number of limbs and the way Libgcrypt cuts the exponent into slices during the

484 Simple Power Analysis Attacks using Data with a Single Trace and no Training

computation; while for the traditional version, it is due to some possible required memory
allocations depending on the already allocated variable sizes.

In order to locate the different ROI, we use a simple approach which consists in using
one ROI as a power pattern for finding the others. Locating all ROI is then achieved by
simply computing, for each subtrace of the same size, the sum of the absolute difference
between the subtrace and the pattern, and keeping the ROI if this difference is below
some threshold, as illustrated in Algorithm 7. The threshold value is typically obtained
empirically: we can manually find a few ROI in the trace, compute this difference and
define a threshold. This threshold needs to be larger than the maximum difference observed
and smaller than the difference for the other non-ROI subtraces. Finding such a threshold
is not complicated since the difference between the results of a ROI and a non-ROI subtrace
is very significant. Besides, if we miss some ROI due to the threshold being too low, we
can deduce the location of these ROI from the number of cycles between neighbouring
ROI we found: if this number is significantly higher than usual, it means that some ROI
have been missed, and we can then adapt the threshold consequently.

Finally, the attack time is almost exclusively the time spent locating the ROI and this
time increases linearly with the pattern size. Therefore, using patterns of different sizes
can result in different trade-offs in terms of attack time and accuracy, and using shorter
patterns can greatly reduce the attack time at the price of missing some ROI.

4.4 Locating the Points of Interest
Focusing on Figure 2, we can observe that for the windowed version, the section for which
the iteration number is equal to the slice value (condition k = e0 in Algorithm 6) has a
different power profile compared to the other, the top part being slightly higher. However,
this difference, related to the reading of the precomputed elements, is harder to use than
the difference related to the masks’ computation that happens at the beginning of each
section. This is why we decided to focus on the latter and to use these samples points as
POI as they are the most obvious and stable ones.

Since we have only one trace, the approach we use is to “fold” the trace, by overlaying
all the ROI found in it. By doing so, the sample points at which the masks’ computation
occur will exhibit two sets of traces clearly separated, depending on the condition value.

Figure 3 illustrates the overlayed ROI for both versions. In this figure, we notice that
two possible areas can be chosen, corresponding to the computation of msk0 and msk1,
represented by squared dotted areas. In order to determine the threshold for each POI in
the traditional version, we compute the greatest power difference for all ordered power
measures at the corresponding sample, and take the middle of the two corresponding
samples, as illustrated in Algorithm 8. As each ROI contains a single POI at the same
position, locating all the POI is straightforward.

For the windowed version, overlaying the ROI yields 17 distinct POI, and a threshold
can be computed for each. Actually, as long as the size of the base remains the same,
no matter how the exponent changes, the location of the different POI inside the ROI
will remain the same. In fact, the width of the sections inside a ROI first increase – as
shown in Figure 2 – because when the result of the precomputed power is smaller than
the modulus, Libgcrypt encodes it only on the required number of limbs. Therefore, the
copy time changes according to this number. In our case, we sign a hash from the hash224
function, which is 224-bit long i.e. 7 limbs. Even when the condition is 0, if the value
is not really copied, the number of iterations still depends on the number of limbs as
shown lines 4–5 in Algorithm 4. The loaded precomputed results grows until reaching the
modulus size, after what it remains the same size. Thus, the POI are always located at
the same position in a ROI for a given base size, and their location can easily be found.
Indeed, each section of a ROI has two parts: one containing the mask generation and one
containing the reading of the limbs. In our case, we can observe that the part containing

X. Hu et al. 485

the mask generation takes 89 cycles while the reading takes 13 cycles per limb. Using
these values, we can easily calculate the location of all POI in each ROI as long as we
know one POI location of one ROI from the trace.

Locating the POI automatically could alternatively be done by looking for the sample
in each section of the ROI for which the greatest power difference for all ordered power
measures is maximum. However, it still requires to identify the section, therefore bringing
little advantage.

Algorithm 8 Finding the POI threshold
1: function FindPOIThresholds(pm_list) . A list of power measures
2: opm ← sort(pm_list) . Ordered power measures
3: power_diff ← [(opm[i + 1] - opm[i]) for i in range(len(opm) - 1)]
4: idx ← argmax(power_diff) . Index of the maximum value
5: threshold ← opm[idx] + (power_diff[idx] / 2)
6: return threshold

Time

C
u
rr
e
n
t

(a) Traditional version
Time

C
u
rr
e
n
t

(b) Windowed version

Figure 3: Power consumption at the POI corresponding to the mask computation in the
SetCond function for one trace and for both versions. For the windowed version, the
displayed POI are those corresponding to the first of the 17 sections. Traces in orange
correspond to a condition of 1, while traces in green correspond to a condition of 0. Dashed
areas indicate where the masks are computed.

4.5 Determining the Operations from the POI

For the windowed version, each ROI contains 17 POI, corresponding to the 17 calls to the
SetCond function, as shown in Algorithm 6. The last POI indicates if the operation is
a Square (i 6= 0) or a Multiply (i = 0). Therefore, the recovery shown in Algorithm 9
starts by checking the power value at this POI in order to determine the operation (line
6). If the operation is a Multiply, we then check each of the first 16 POI, until we find the
section for which the condition is true, meaning that the section number is equal to the
exponent slice value (line 8). We then store this slice value and the corresponding number
of preceding squares.

For the traditional version, the recovery of the sequence of operations is trivial, as each
POI directly gives the operation (Square or Multiply) depending on the condition value,
which is directly the exponent bit value.

486 Simple Power Analysis Attacks using Data with a Single Trace and no Training

Algorithm 9 Recovering the sequence of squares and multiplications from the POI
1: function RecoverOperations(poi, trace) . Returns the sequence of operations
2: j ← 0
3: e0_list ← [] . List of exponent slice values
4: nb_squares ← [] . nb_squares[i] is the number of squares preceding the ith multiply
5: for i from 0 to len(poi) − 1 do
6: if trace[poi[i][16]] > threshold16 then . Multiply detected
7: for k from 0 to 15 do . precomp[k]
8: if trace[poi[i][k]] < thresholdk then . k is equal to e0
9: e0_list.append(k) . k contains the exponent slice value
10: nb_squares.append(j) . j squares
11: j ← 0
12: break
13: else
14: j ← j + 1
15: return e0_list, nb_squares

4.6 Reconstructing the Secret Exponent

Algorithm 10 Exponent recovery from the sequence of operations
1: function RecoverExp(e0_list, nb_squares)
2: exp ← [1]
3: for i from 0 to (len(e0_list) - 1) do
4: exp.extend([0] × nb_squares[i]) . Concatenate nb_squares[i] '0' to the right
5: b ← bin(2 × e0_list[i] + 1) . Binary representation
6: for j from 0 to (len(b) - 1) do
7: exp[len(exp) - 1 - j] ← b[len(b) - 1 - j]
8: return exp

The reconstruction of the full secret exponent for the windowed version is shown in
Algorithm 10, which traverses the list of exponent slice values and first concatenates the
corresponding number of '0' bits (line 4), which is equal to the number of squares, and
then adds the exponent value 2 × e0_list[i] + 1 (lines 5–7). As an example for the
first iteration, if e0_list[0] = 3 and nb_squares[0] = 5, we first have exp = (1)2, then we
concatenate 5 '0' bits to the right (exp = (100000)2), finally the exponent value (2 × 3 +
1) = 7 = (111)2 is added (exp = (100111)2).

4.7 Experimental Results
In this section, we show how using the power consumption of the mask computation,
we can recover very accurately the full exponent with a single trace without any prior
knowledge from other traces. For a given target, the only required preliminary step is to
identify one ROI in the trace, which can be more or less time-consuming depending on
the attack hypotheses – specifically whether the code can be modified or not. For these
experiments, we thus suppose that for each trace, we have located manually one ROI, and
then we use it as a pattern for the detection of all the other ROI. In practice however, the
detection of this ROI of each trace was done using a common pattern in order to speedup
the process, since the ROI shape does not change much between two different traces.

The attack achieved in this section comprises the following parts for each trace: 1) Select
one ROI as pattern; 2) Locate all ROI using the pattern; 3) Overlay all ROI found in
the trace, in order to obtain the folded trace; 4) For the traditional (resp. windowed)
version, locate in the folded trace (resp. in each section of the folded trace), a sample

X. Hu et al. 487

point for which all trace portions split very clearly into two sets, and use it as POI as
shown in Figure 3; determine the POI thresholds; 5) Recover the operations from the
power consumption at the POI, and the exponent from the operations.

The attack presented only uses basic knowledge on the traces. However, by making
a more detailed analysis, it is possible to improve the attack execution time. For the
windowed version, using a 2,048-bit exponent, the full exponentiation takes around 530
millions cycles. Taking as pattern a complete ROI of 13,711 samples (large pattern),
detecting all the ROI approximately takes two hours. As mentioned in section 4.3, we do
not necessarily need to use the entire ROI as a pattern if we can find a part of the ROI
which is sufficiently different from other parts of the trace. We have thus found two other
good pattern choices: a 277-sample pattern corresponding to the first section of a ROI
(medium pattern), and a 50-sample pattern corresponding to the mask computation part
of the 16th section (short pattern). However, the shorter the pattern, the more sensitive
it is to variations in data. Therefore, we need two versions for the short and medium
patterns, one for each condition value, for matching reliably both cases. In this setup, a
ROI is detected when any pattern matches. On the other hand, as mentioned earlier, even
though the number of cycles between two consecutive ROI vary, it is comprised in a given
range. As a consequence, we can skip a certain number of samples after finding a ROI.

Table 1: Attack results for both the traditional and windowed versions, using distinct
2,048-bit exponents

Version Traces Total Pattern Missed Time/ Incorrect
bits ROI trace bits

Traditional 30 61,440 short 0 0.6 s 1

Windowed 30 61,440
large 0 5992 s

0medium 5 77 s
short 7 11 s

Experiments were made on 30 traces using distinct 2048-bit exponents for each version.
We used as POI the computation of msk1 for both versions, as it seems a little more
consistent in the last section of the windowed version. The results are presented in Table 1.
For the traditional version, no ROI is missed with the 30-sample pattern corresponding
to the entire ROI, and all bit values except one are correctly found. For the windowed
version, no ROI is missed with the large pattern, 5 ROI (in 5 different traces) are missed
with the medium pattern pattern and 7 ROI (in 7 different traces) are missed with the
short pattern. In any case, no incorrect bit value is recovered from a POI, showing the
high accuracy of this attack. Besides, the selected medium and short patterns and the skip
operation allow to greatly reduce the attack time for the windowed version, from almost
two hours for the full pattern without the skip operation, to respectively 77s and 11s.

These results underly the fact that securing the exponentiation against side-channel
attacks, even simple ones, is a challenging task. They suggest that it is hopeless to
secure the exponentiation with techniques based on constant time or code tricks, but that
countermeasures should instead focus on mathematical aspects, or include randomness.

5 Attacking ECDSA with a SPA
5.1 Characterisation and Setup
For ECDSA, we used the bearssl library [Por23], which provides constant time crypto-
graphic implementations. It is compiled with gcc 10.2.1 using optimisation level O2, and
using the curve p256m31. The ECC multiplication in this library is constant time and uses

488 Simple Power Analysis Attacks using Data with a Single Trace and no Training

a fixed 4-bit window over the scalar value, performing the loads of all the values in the
table (outer loop over i), and keeping only the correct value using a masking technique,
as shown in Algorithm 11. Each value is a point of the curve (which is the multiplication
of G by a scalar between 1 and 15), encoded as several 32-bit limbs in order to store the
256-bit coordinates: 9 limbs for the x coordinate and 9 limbs for the y coordinate2. The
inner loop over j reads and masks these 18 limbs.

Algorithm 11 Pseudo-code of the LookupGwin function in the bearssl library
. idx contains the window value of the scalar bits
. Gwin[i][j] contains word j of (i+1)∗G
. EQ(x, y) returns 1 if x = y, 0 otherwise

1: function LookupGwin(idx) . returns idx∗G
2: P ← 0
3: for i from 0 to 14 do
4: mask ← -EQ(idx, i + 1)
5: for j from 0 to 17 do
6: P[j] ← P[j] | (mask & Gwin[i][j])
7: return P

We recorded traces consisting of the 64 iterations, each iteration processing 4 bits
of the scalar value. Such a trace requires approximately 6,000,000 processor cycles to
complete. As for RSA, we recorded the samples using the ChipWhisperer Pro device, with
a STM32F3 target board comprising a Arm Cortex-M4. The number of cycles and samples
in a trace imposes here again to use the capture device in streaming mode, which limits
the number of samples to a single sample per cycle.

5.2 Attacking the Masked Loads
We first targeted the loads in the precomputed values table, and more specifically the
computation of the mask. We manually located in the trace the power corresponding to the
LookupGwin function calls, which constitutes our ROI. Since all the ROI are separated
with a constant number of samples, the identification of the 64 ROI is straightforward. In
Figure 4, we can clearly see that there are 15 sections on each subfigure (again separated
by a fixed number of samples), while zooming in reveals that each section containing 18
smaller sections. These are exactly the for i and for j loops in LookupGwin.

We can already observe in Figure 4 that when the 4-bit value is equal to i + 1 (mask =
-1), the power consumption of the whole iteration is significantly different. This is because
the program actually keeps the precomputed value only in this case, and thus the result of
the bitwise AND operation will have a average Hamming Weight value of 15, instead of 0.

However, as in the case of the exponentiation, the power consumption difference resulting
from mask computation is way clearer. By overlaying different ROI, we can observe a
sample at the beginning of each section (for i iteration) whose value highly depends on
the condition value. This sample in each section, that we use as POI, corresponds to the
operation: mask ← -EQ(idx, i + 1).

Figure 5 illustrates the power consumption for all overlayed ROI, at the samples
corresponding to the mask computation. In this figure, the top curves correspond to POI
in the first section: the dark blue curves when the condition is true which means the
window value is 1; the dark orange curves when the condition is false and the window
value is different from 0; and the dark green curves when the condition is false and the
window value is 0, meaning the condition will be false for all other sections. It is somewhat
surprising to see that some sample points allow to discriminate very clearly between a 0

2A point coordinate is encoded on 9 32-bit words, using 30 bits for the first 8 words, and 16 bits for
the last

X. Hu et al. 489

(a) Window value = 1 (b) Window value = 3 (c) Window value = 12

Figure 4: Power consumption of one LookupGwin function call for different window
values.

Cu
rr
en

t

Time

(a) Mask computation and beginning of the copy

Time
C
ur
re
nt

(b) Focus on mask computation

Figure 5: Power consumption associated to the mask computation in ECDSA. The different
colors indicate different sections and condition values.

and a non-zero window value; yet regardless, we did not use this information in our attack,
focusing only on the condition result at each iteration. The bottom curves correspond to
sections 1 to 14 (from the second to the 15th): the blue curves when the condition is true,
i.e. when the iteration matches the window value, the pink curves when the condition is
false but has already been true in one of the previous sections of current ROI, the orange
curves when the condition is false and has not yet been true in one of the previous sections
of current ROI, and the green curves (mixed with the orange ones) correspond to false
conditions when the window value is 0, because no condition of any section in this ROI
will be true when the value is 0.

From this figure, we can observe that the power consumption in the first section is
significantly different from the other sections, for which the measures all coincide. Therefore,
we decided to use two thresholds (determined with the technique described in Algorithm 8):
one for the first section and one for the others. As the number of iterations is only 64, this
allows to have a threshold even for window values which are never reached. As for the
window value 1, if it is never reached, all curves at the POI will overlay and the assumption
must be made that this value is never obtained.

Putting apart the first iteration, we thus decided to look whether one of the measure
at the POI was greater than the threshold: if not, the value 0 is deduced, otherwise, the
window value taken is the index corresponding to the maximum of the observed values
(Algorithm 12). Finally, since the discrimination using the threshold must only be done
between a 0 value and a non-0 value (sets of blue and light green/light orange curves), the
threshold can optionally be adapted for the attack to be more robust. In practice, we used
an ε value of 0.01, from the observations made in Figure 5.

We captured 1,000 traces and ran the attack on each of these traces: on the 1,000 × 64

490 Simple Power Analysis Attacks using Data with a Single Trace and no Training

Algorithm 12 ECDSA Digits recovery using the power measures
1: function BitsRecovery(trace, poi)
2: cons1 = [], cons2 = [], secret = ''
3: for j from 0 to 63 do
4: cons1.append(trace[poi[j][0]])
5: for i from 1 to 14 do
6: cons2.append(trace[poi[j][i]])
7: threshold2 = find_threshold(cons2)
8: threshold1 = find_threshold(cons1)
9: for j from 0 to 63 do
10: if cons1[j] > threshold1 then
11: secret += '1'
12: else
13: cons_j = cons2[j × 14 : (j + 1) × 14] . Sublist with the POI of the jth ROI only
14: if max(cons_j) > threshold2 - ε then
15: secret += str(cons_j.argmax(cons_j) + 2) . hex character encoding 4 bits
16: else
17: secret += '0'
18: return secret

window values, we recovered correctly all the scalar bits of the nonce k, using Algorithm 12.
These results are summarized in table 2.

Table 2: Results for the ECDSA attack for 1,000 traces.

Nb. Traces Nb. of Nb. of Percentage of Percentage of
digits secret nonces recovered digits recovered secret nonces

1,000 64,000 1,000 100% 100%

5.3 Attacking the 0 Values

Time

C
u
rr
e
n
t

Figure 6: Power consumption for the reads and writes of machine words representing a
point of the curve. Red curves indicate the point at infinity, while blue curves indicate
another point. The purple line indicates the sample used for the attack.

As seen in section 2.2, the considered implementation iteratively loads precomputed
values from a table. Each value consists of several limbs in order to reconstruct the 256-bit

X. Hu et al. 491

coordinates. Due to the nature of the algorithm, when the window value is 0, the result
of its multiplication with the base point is the point at infinity, encoded as limbs with
value 0 only. Thus, when loading and writing iteratively all of the words of the resulting
point, the Hamming Weight of each word will be 0, while it will be 15 on average for
other points. This difference in Hamming Weight is actually sufficient to identify when
the point at infinity is used. This can actually lead to an attack, since the knowledge of
the “zero” values in k on a few traces is sufficient to recover the secret [GRV17, HGS01].
Note that this attack is independent from the masking technique, and targets the copy of
the resulting point at the end of the LookupGwin function.

Table 3: Results for the ECDSA attack consisting in determining the 0 values.

Number of Number of Number of '0' digits Number of non-'0' Attack
traces digits incorrectly found digits incorrectly found Accuracy
1,000 64,000 1 0 99.998%

Here again, by overlaying the ROI corresponding to the copy, two sets of traces appear
clearly, as shown in Figure 6. This figure shows that there is a clear difference in power
consumption between a window value of 0 (red curves) and a window value different from
0 (blue curves), due to the difference in Hamming Weights.

Once again, we achieved this attack without the knowledge of previous executions, and
the thresholds were determined using only the trace itself. We captured 1000 traces and
for each trace and each iteration, we guessed if the loaded point was the point at infinity
or not based on the power consumption of the selected sample. Similarly to the previous
attack, for traces containing no zeros, we used a criteria on the found maximum difference
in the ordered power values, and concluded that all windowed values were different from 0.
The results, summarized in table 3 show that all digits were correctly identified except a
single digit.

6 Extensibility of the Attack and Limitations

6.1 Extensibility Regarding the Architecture

The two hypotheses required for the presented attacks to work are the following: 1) all
the ROI should overlay; 2) the power consumption for the mask computation should be
significantly different depending on the condition value. While we do not know if these
hypotheses will hold for any architecture, it is likely that they should be true often: the
first one because the compiled code should follow the source code structure, which does
not contain any conditional branch inside the ROI; the second one because the mask
computation will always produce a different number of bit flips on the data path depending
on the condition value, these bit-flips constituting the most important part in power
consumption.

In order to support this statement, we have analysed the power consumption of the
SetCond function on different architectures: Arm Cortex-M0 (STM32F0), Arm Cortex-
M3 (STM32F1), and XMEGA (ATMEGA128-16AUR). The results in Figure 7 show that
there is a clear difference between the two condition values for the XMEGA and the
Cortex-M3 targets – even if for the latter, some traces are shifted above the others. For
the Cortex-M0, a single sample does not allow to discriminate clearly, but a difference is
still visible. These results show that this attack can work on different architectures.

492 Simple Power Analysis Attacks using Data with a Single Trace and no Training

8890929496

−0.3−0.2−0.1

Time

C
u
rr
e
n
t

(a) Cortex-M0 core

464850525456586062

−0.100.10.20.3

Time

C
u
rr
e
n
t

(b) Cortex-M3 core
Time

C
u
rr
e
n
t

(c) XMEGA core

Figure 7: Power consumption of the masks’ computation in the SetCond function for
alternative architectures depending on the condition value (0 in blue, 1 in red).

6.2 Extensibility Regarding the Library
In order to evaluate the impact of the proposed attack, we have analysed the source code
of three other libraries, in addition to libgcrypt and bearssl, for the exponentiation used
in RSA: GMP, OpenSSL and mbedtls. As it turns out, all three libraries use similar techniques
with a mask computation for achieving constant time.

For GMP, the computation is made in a function called mpn_sec_tabselect, which loads a
given precomputed element from an array. There are actually two versions of this function,
which process in a different order the limbs and the elements in the array of precomputed
elements, but make essentially the same treatment. A code fragment of this function is
shown in listing 1, in which k is the iteration number, and which is the window value. The
shown code is performed for each element in the array.

Listing 1: Mask computation and loading of the precomputed element in GMP

mask = -(mp_limb_t) ((-(unsigned long) (which ^ k)) >> (
BITS_PER_ULONG - 1));

tp += n;
for (i = 0; i < n; i++)

rp[i] = (rp[i] & mask) | (tp[i] & ~mask);

For OpenSSL, the function MOD_EXP_CTIME_COPY_FROM_PREBUF accumulates in a machine
word the corresponding word from all precomputed elements after having masked them.
Code listing 2 shows how this is performed, using the function constant_time_eq which
computes the mask value based on the current iteration j and the window value idx.

Listing 2: Mask computation and loading of the precomputed element in OpenSSL

for (i = 0; i < top; i++, table += width) {
BN_ULONG acc = 0;
for (j = 0; j < xstride ; j++) {

acc |= ((table[j+0* xstride] & y0) | (table[j+1* xstride] & y1) |
(table[j+2* xstride] & y2) | (table[j+3* xstride] & y3))

& ((BN_ULONG) 0 - (constant_time_eq_int (j, idx) & 1));
}
b->d[i] = acc;

}

Finally, in mbedtls, the function mbedtls_ct_uint_eq performs a constant time mask
computation using the function mbedtls_ct_uint_eq, followed by a conditional assignment
with the function mbedtls_mpi_core_cond_assign. This is illustrated in listing 3 in which
index is the window value, count the number of precomputed elements, and assign the
mask value.

Listing 3: Mask computation and loading of the precomputed element in mbedtls

X. Hu et al. 493

Time

Threshold

Greatest Power
Difference

C
u
rr

e
n
t

(a) Incorrect recovered bit from POI (in red)
for the traditional version. The first 3 iterations
have been omitted for clarity.

0510152025

−0.2−0.15−0.1−0.0500.050.1

Time

C
u
rr
e
n
t

(b) Missed ROI (in red) compared to the other
ROI for the 50-sample pattern and the windowed
version.

Figure 8: Examples of errors encountered by the RSA attack.

for (size_t i = 0; i < count; i++, table += limbs) {
mbedtls_ct_condition_t assign = mbedtls_ct_uint_eq (i, index);
mbedtls_mpi_core_cond_assign (dest , table , limbs , assign);

}

In conclusion, while we do not know if this technique is used in every cryptographic
library, it is used in the most common ones and thus the attack presented has a larger
scope than the two attacked libraries.

6.3 Limitations and Error Analysis
For the RSA attack, one bit is incorrectly detected for the traditional version. Figure 8a
shows this incorrect bit: green curves correspond to a condition value of 0 while orange
curves a condition value of 1. The red curve is detected as a 1 instead of a 0, due to the
threshold being above the red curve. We can notice that this error could be managed with
a slightly more complex approach, considering for example two or more consecutive power
values around the POI and compute their difference in order to deduce the shape of the
correct curve. However, even with the simple threshold strategy, this is the single error on
the 61,440 attacked bits for the traditional version, while no error occurs for the windowed
version.

We also investigated the missed ROI for the windowed version and noticed that they
all occurred at the end of the trace. For these ROI, a small part of the trace seems shifted,
leading to a higher difference with the pattern, as illustrated in Figure 8b. While we did
not manage to understand the cause of this difference, its impact on the attack remains
limited and as we mentioned earlier, all the missed ROI are easy to locate.

7 Attacking a Countermeasure from the Literature
In their 2022 article, Saito et al. [SIUH22] propose the solution recalled in Algorithm 13
to safely load the window value, using two random masks. They conclude that it will
mitigate the two vulnerabilities exploited in their proposed attack.

Using the experience acquired with our previous attacks, we show how the exponent
value can still be recovered. The attack works by identifying two distincts iterations: the
iteration it0 for which i = bmasked, and the iteration it1 for which i ⊕ rorder = 0. We

494 Simple Power Analysis Attacks using Data with a Single Trace and no Training

Algorithm 13 Proposed Operand Loading Process from [SIUH22]
Inputs: Precomputed table (c0, c1, ..., c2w−1), window size w, window value b
Output: Multiplication operand s = cb

1: function LoadOperand((c0, c1, ..., c2w−1), w, b)
2: rvalue ← GenerateRandoml() . Generate a l-bit random mask
3: s ← c0 ⊕ c1 ⊕ ... ⊕ c2w−1 ⊕ rvalue
4: rorder ← GenerateRandomw() . Generate a w-bit random mask
5: bmasked ← b ⊕ rorder

6: for i from 0 to 2w−1 do
7: mask ← MakeBitMask(i, bmasked) . MakeBitMask returns 1...1 if i = bmasked, else 0
8: s ← s ⊕ (ci⊕rorder & ¬ mask | rvalue & mask)
9: return s

thus have it0 = bmasked and it1 = rorder. Using the fact that bmasked = b ⊕ rorder, we
have b = it0 ⊕ it1.
Identifying i = bmasked. As we have seen in sections 4 and 5, determining the value of a
condition when the latter is used to create a word with only zeros or ones can be done very
accurately. Therefore, the MakeBitMask function is very likely to exhibit this iteration.
Identifying i ⊕ rorder = 0. In this iteration, the element loaded in the precomputed
table is c0 = 1. As we have seen in section 4, in Libgcrypt the precomputed elements are
encoded on the minimum required number of limbs. Hence in this case, it is sufficient to
count the number of iterations during the copy: when a single limb is copied, it means that
c0 is loaded. Yet, even if all precomputed elements are stored on the same number of limbs
(e.g. 64 limbs for 2,048 bits), it is possible to identify precisely when words containing the
value 0x0 are loaded as opposed to words containing roughly half of their bits set, as seen
in section 5. In this case, we can then simply count the number of words with value 0
loaded during the copy: the maximum will be reached for c0.

As an alternative, the iteration for which i ⊕ rorder = 1 can also be identified, i.e. when
c1 is loaded. Indeed, most implementations follow the PKCS #1 v1.5 standard [MKJR16],
which specifies that the base must be padded with the byte value 0xFF to reach the modulus
size. In that case, the power consumption associated to loading words with all bits set will
easily be recognizable from the power consumption when loading pseudo-random words.

Either way, identifying any of these two iterations allows the recovery of rorder, and
thus of b, making the countermeasure inefficient.

8 Conclusion

In this article, we showed that power differences associated to variations in data values can
be exploited for practical Simple Power Attacks. In particular, we showed that the masking
technique often used in constant time implementations to keep one among two possible
values leaks its condition in a way that a single sample allows to recover it without error.
We illustrated this attacks on the two implementations of the modular exponentiation in
Libgcrypt and on the scalar ECC multiplication of the bearssl library. We additionally
showed that the load of memory words containing either the value 0 or a random value
can be clearly identified and also used as an attack vector. Finally, we explained how a
proposed countermeasure from the literature for performing secure loads of precomputed
values can be attacked. Future work includes the applicability of the proposed attack
concepts to other cryptographic domains, as well as designing secure implementations
taking into account the presented findings.

X. Hu et al. 495

References
[AYW+21] Monjur Alam, Baki Yilmaz, Frank Werner, Niels Samwel, Alenka Zajic, Daniel

Genkin, Yuval Yarom, and Milos Prvulovic. Nonce@Once: a single-trace EM
side channel attack on several constant-time elliptic curve implementations
in mobile platforms. In IEEE European Symposium on Security and Privacy,
2021.

[BBG+17] Daniel J Bernstein, Joachim Breitner, Daniel Genkin, Leon Groot Bruinderink,
Nadia Heninger, Tanja Lange, Christine van Vredendaal, and Yuval Yarom.
Sliding right into disaster: Left-to-right sliding windows leak. In Cryptographic
Hardware and Embedded Systems–CHES 2017: 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, pages 555–576. Springer,
2017.

[GB23] Utku Gulen and Selcuk Baktir. Side-channel resistant 2048-bit RSA imple-
mentation for wireless sensor networks and internet of things. IEEE Access,
2023.

[GRV17] Dahmun Goudarzi, Matthieu Rivain, and Damien Vergnaud. Lattice attacks
against elliptic-curve signatures with blinded scalar multiplication. In Selected
Areas in Cryptography–SAC 2016: 23rd International Conference, St. John’s,
NL, Canada, August 10-12, 2016, Revised Selected Papers 23, pages 120–139.
Springer, 2017.

[HGS01] Nick A Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital
signature schemes. Designs, Codes and Cryptography, 23:283–290, 2001.

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital
signature algorithm (ECDSA). International journal of information security,
1:36–63, 2001.

[LGS+16] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. ARMageddon: Cache attacks on mobile devices. In 25th USENIX
Security Symposium (USENIX Security 16), pages 549–564, 2016.

[LH20a] JongHyeok Lee and Dong-Guk Han. DLDDO: deep learning to detect dummy
operations. In International Conference on Information Security Applications,
pages 73–85. Springer, 2020.

[LH20b] JongHyeok Lee and Dong-Guk Han. Security analysis on dummy based side-
channel countermeasures—case study: AES with dummy and shuffling. Applied
Soft Computing, 93:106352, 2020.

[LLQ+20] Qi Lei, Chao Li, Kexin Qiao, Zhe Ma, and Bo Yang. Vgg-based side channel
attack on RSA implementation. In 2020 IEEE 19th International Conference on
Trust, Security and Privacy in Computing and Communications (TrustCom),
pages 1157–1161. IEEE, 2020.

[MKJR16] Kathleen Moriarty, Burt Kaliski, Jakob Jonsson, and Andreas Rusch. PKCS
#1: RSA Cryptography Specifications Version 2.2. RFC 8017, November 2016.

[MOP08] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks:
Revealing the secrets of smart cards, volume 31. Springer Science & Business
Media, 2008.

496 Simple Power Analysis Attacks using Data with a Single Trace and no Training

[MV19] Thierry Mefenza and Damien Vergnaud. Cryptanalysis of server-aided RSA
protocols with private-key splitting. The Computer Journal, 62(8):1194–1213,
2019.

[NCOS16] Erick Nascimento, Łukasz Chmielewski, David Oswald, and Peter Schwabe.
Attacking embedded ECC implementations through cmov side channels. In
International Conference on Selected Areas in Cryptography, pages 99–119.
Springer, 2016.

[OC14] Colin O’Flynn and Zhizhang David Chen. Chipwhisperer: An open-source
platform for hardware embedded security research. In COSADE, 2014.

[Por23] Thomas Pornin. BearSSL implementation of the SSL/TLS protocol. https:
//bearssl.org/, 2023.

[SIUH22] Kotaro Saito, Akira Ito, Rei Ueno, and Naofumi Homma. One truth prevails:
A deep-learning based single-trace power analysis on rsa–crt with windowed
exponentiation. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 490–526, 2022.

[Ver20] Damien Vergnaud. Comment on “efficient and secure outsourcing scheme
for RSA decryption in internet of things”. IEEE Internet of Things Journal,
7(11):11327–11329, 2020.

[WCPB20] Léo Weissbart, Łukasz Chmielewski, Stjepan Picek, and Lejla Batina. System-
atic side-channel analysis of curve25519 with machine learning. Journal of
Hardware and Systems Security, 4:314–328, 2020.

[WPB19] Leo Weissbart, Stjepan Picek, and Lejla Batina. One trace is all it takes:
Machine learning-based side-channel attack on eddsa. In Security, Privacy,
and Applied Cryptography Engineering: 9th International Conference, SPACE
2019, Gandhinagar, India, December 3–7, 2019, Proceedings 9, pages 86–105.
Springer, 2019.

[YF14] Yuval Yarom and Katrina Falkner. Flush+Reload: a high resolution, low noise,
L3 cache side-channel attack. In 23rd USENIX security symposium (USENIX
security 14), pages 719–732, 2014.

https://bearssl.org/
https://bearssl.org/

	Introduction
	Background
	Modular Exponentiation
	ECDSA

	Related Works and Discussion
	Attacking RSA Modular Exponentiation with a SPA
	Characterisation: Conditional Assignment using Masking
	Attacking the Full Exponentiation
	Locating the Regions of Interest
	Locating the Points of Interest
	Determining the Operations from the POI
	Reconstructing the Secret Exponent
	Experimental Results

	Attacking ECDSA with a SPA
	Characterisation and Setup
	Attacking the Masked Loads
	Attacking the 0 Values

	Extensibility of the Attack and Limitations
	Extensibility Regarding the Architecture
	Extensibility Regarding the Library
	Limitations and Error Analysis

	Attacking a Countermeasure from the Literature
	Conclusion

