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Abstract. Industry trends are moving toward increasing use of chiplets as a re-
placement for monolithic fabrication in many modern chips. Each chiplet is a
separately-produced silicon die, and a system-on-chip (SoC) is created by packaging
the chiplets together on a silicon interposer or bridge. Chiplets enable IP reuse, het-
erogeneous integration, and better ability to leverage cost-appropriate process nodes.
Yet, creating systems from separately produced components also brings security risks
to consider, such as the possibility of die swapping, or susceptibility to interposer
probing or tampering. In a zero-trust security posture, a chiplet should not blindly
assume it is operating in a friendly environment.

In this paper we propose a delay-based PUF for chiplets to verify system integrity.
Our technique allows a single chiplet to initiate a protocol with its neighbors to
measure unique variations in the propagation delays of incoming signals as part of an
integrity check. We prototype our design on Xilinx Ultrascale+ FPGAs, which are
constructed as multi-die systems on a silicon interposer, and which also emulate the
general features of other industrial chiplet interfaces. We perform experiments on,
and compare data from, dozens of Ultrascale+ FPGAs by making use of Amazon’s
Elastic Compute Cloud (EC2) F1 instances as a testing platform. The PUF cells
are shown to reject clock and temperature variation as common mode, and each cell
produces approximately 5 ps of unique delay variation. For a design with 144 PUF
cells, we measure the mean within-class and between-class distances to be 68.3 ps and
847.7 ps, respectively. The smallest between-class distance of 686.0 ps exceeds the
largest within-class distance of 124.0 ps by more than 5x under nominal conditions,
and the PUF is shown to be resilient to environmental changes. Our findings indicate
the PUF can be used for authentication, and is potentially sensitive enough to detect
picosecond-scale timing changes due to tampering.
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1 Introduction

Chip manufacturers have traditionally relied on Moore’s Law to create increasingly complex
integrated systems on each single silicon die. However, more recently with increasing
design complexity, smaller node sizes and a shift to Systems-on-Chip (SoCs) architectures,
large monolithic designs are becoming impractical as the limits of technology are tested
and yields decrease. An increasingly popular solution to these challenges is partitioning a
large design into multiple smaller components known as chiplets. Chiplets are smaller dies
that are separately fabricated with standardized interfaces, which are then integrated into
a larger system by assembly on a passive silicon interposer or bridge that connects the
chiplets to each other.

Chiplets can be viewed as a middle ground between monolithic single die systems-
on-chip and PCB-based systems, inheriting salient features of each. Like connections
between functional units on monolithic SoCs, the connections between chiplets are dense
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and unterminated; the connections provide high bandwidth, low-latency, and sub-pJ
energy-per-bit. On the other hand, like connections between chips in PCB-based systems,
chiplets allow for heterogeneity of process nodes and vendor choices, and can be reused in
different combinations across product lines.

Chiplet-based designs are not without downsides. Compared to monolithic chips the
logistics of manufacturing, testing and assembling multiple smaller dies means increased
packaging cost, and the die-to-die connections incur latency and power penalties. Moreover,
due to the latency penalty, it can be challenging to split large elements such as coherent
memories across dies without performance loss. Last but not least, splitting a design
across multiple chiplets opens new attack vectors and potentially exposes the system to a
greater risk of tampering. Likewise, chiplets also have some downsides when viewed as an
alternative to PCB-based system, in that they cannot easily be serviced or changed after
assembly, and that their increased compute density generates more heat within a small
area that must be dissipated. Although there will continue to be some applications better
suited to a monolithic die or PCB-based system, industry is trending toward increasing
use of chiplets in the coming years.

The term “zero trust” describes a security paradigm in which “there is no implicit
trust granted to assets or user accounts based solely on their physical or network loca-
tion” [RBMC20]. For reasons described more fully in Section 2.3, hardware disaggregation
creates a scenario in which a zero trust posture between the chiplets of a system may be
warranted. A chiplet should not blindly assume that signals it receives and transmits are
being communicated exclusively to honest actors that share a common goal of a secure
system. Yet even if adopting a zero trust posture, it is not obvious what actions can be
taken in support of it. To establish a measure of trust in the integrity of other chiplets
within a system, we propose a scheme in which a chiplet can measure the delays of signals
arriving from its neighbors, and check that information against its expectations to decide
whether to trust the neighbor or not. The specific contributions of our work are as follows:

e We present a novel design that can extract robust delay signatures from inter-die
connections through an interposer in chiplet-based systems, with common-mode
rejection of undesirable clock and environmental variations.

¢ We prototype and validate the design on Xilinx VU9P FPGAs locally and across
a population of chips on Amazon’s EC2 F1 instances to show ability to extract
sufficient entropy as a PUF, while being able to measure picosecond-scale delay
changes that might arise from tampering.

o We perform extensive analysis across a variety of design manipulations to identify
the specific sources of entropy in the system.

2 Background and Related Work
2.1 Chiplets and Advanced Packaging

A survey of chiplets is found in [LHY"20]. Details given below are for several popular
chiplet interfaces currently used by large players in the industry. The design that we
propose in this paper is demonstrated on Xilinx chiplets, but it uses generic features of
source-synchronous clocking that are shared by all the currently leading chiplet connection
technologies. In source-synchronous clocking, the transmitting device forwards its transmit
clock along with the data wires to the receiving device. The receiver uses a controllable
delay line followed by H-tree routing to de-skew the received clock and ensure that the
arriving data signals are sampled near the center of each bit for reliable communication.

Intel AIB and EMIB Intel offers the advanced interface bus (AIB) as the interface
for chiplet connections, and Embedded Multi-Die Interconnect Bridge (EMIB) as the
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packaging technology to realize the AIB connections between adjacent edges of two chiplets.
An array of microbumps along the edge of each chiplet connect it to the EMIB; the
microbumps are arrayed at 55um pitch [LMST20], with plans to scale to 35um pitch,
providing greater density than the typical 100um pitch in a flip-chip package. The density
of connections through EMIB in Intel’s Stratix 10 FPGA is currently 256 wires per mm of
shoreline, and it can scale up to 1024 per mm of shoreline. The EMIB contains multiple
layers of metal connections, typically 4 layers with all wires shielded [LMS™20], to carry
the signals across the shoreline between neighboring chiplets. Clock forwarding and delay
tuning on the receiver side is used for communication. Each wire carries 1 Gbps when
used in Single Data Rate (SDR) configuration [Keh17] [MQV™19]. Currently Intel uses
EMIB/AIB to integrate an FPGA main die in a leading CMOS process, with various I/O
dies from different process nodes; only the largest Stratix 10 device currently splits the
FPGA logic itself across multiple chiplets.

TSMC LIPINCON interface and CoWoS packaging TSMC similarly provides
their own technology for connections between chiplets. Their interface is denoted as
LIPINCON (standing for low-voltage in-package interconnect) and the packaging technology
is denoted as CoWoS (chip on wafer on substrate). Unlike Intel’s EMIB which is a bridge
underneath only the chiplet edges, CoWoS is a full silicon interposer layer underneath the
chiplets. In 2019 TSMC and ARM presented a 7nm proof-of-concept ARM based octo-core
system-in-package processor. The processor is made up of two identical chiplets that run
at 4.0 GHz and communicate using LIPINCON, achieving nearly 320 GB/s of aggregate
bandwidth [LHT*19].

Xilinx Ultrascale+ Driven by the ever increasing demand for higher capacity FPGAs
Xilinx developed a multi-die technology (see Fig. 1a) termed Stacked Silicon Interconnect
(SSI). SSI technology combines multiple FPGA dies into a single device using microbump
connections to a shared silicon interposer [Sab12]. The FPGA chiplet dies are referred
to as Super Logic Regions (SLRs), and the passive silicon interposer is fabricated in
a 65 nm process. Four layers of metalization realize tens of thousands of low latency
connections called Super Long Lines (SLLs) that connect adjacent edges of neighboring
SLRs; state-of-the-art Virtex UltraScale+ devices have as many as 17,280 SLLs. Through-
silicon vias (TSV) through the interposer connect down to the package substrate. Like
similar interfaces, Xilinx SSI technology also allows for the integration of heterogeneous
components such as high speed 10 transceivers. Because FPGAs provide users with
control over clocking, and their reconfigurable logic enables transmitting arbitrary known
patterns on demand across chiplet boundaries, we make use of Xilinx multi-die FPGAs as
a prototyping platform in this work. Analogous capabilities exist in AIB and LIPINCON
compliant chiplets, but they are not exposed to user control which prevents them from
being similarly used for prototyping without producing a cost prohibitive multi-chiplet
system.

2.2 Related Work

Chiplet and System-in-Package technologies are gaining traction and making their way
from size-constrained mobile systems into mainstream computation over the past few
years. The variety of manufacturer-specific interfaces listed in the prior subsection are one
consequence of that evolution.

Standardization of interface protocols to allow for easy plug-and-play compatibility
between chiplets is required to realize the full potential of the technology [MKNT21]. A set
of standardized models including power, 1O, behavioral and test are needed in order to facil-
itate this transition. Notably, the same work that advocates for standardization [MKN™T21]
also cites an emerging need for operational security of chiplets and the resulting packaged
devices; traceability and authentication are listed among top priorities and, although no
concrete solution is proposed, physically unclonable functions (PUFs) are mentioned as a



394 Chiplet PUF

/

/
/
/
/
/
/.
SZ 4,
=Sz
/'____f =
¢ <
<o
===
—
=

Silicon interposer
e C4 Bumps

===

===
==

Package substrate
Solder balls

(a) Model and view of SLL circuit (b) Xilinx Hierarchy

Figure 1: Xilinx multi-chiplet system. (a) shows the physical representation of the chiplet-
based system, with an expanded view of the path of a single SLL through the interposer,
the delay of which is used as an entropy source. (b) shows the hierarchy of the Xilinx
architectural primitives for communicating between SLRs that are used in this work.

possible remedy. Other works focus specifically on the security challenges and opportunities
of chiplet designs with respect to hardware Trojans and supply chain [SBK20], and on side
channel attacks, hardware Trojans, secure manufacturing and IP piracy [GLS'16] Yet,
these works do not propose solutions for authentication.

To support security of communication between chiplets, several works [CMK™21,
NAPT20] propose that an active interposer manufactured by a trusted foundry can be
used as a secure-by-construction root of trust (RoT). The active interposer contains logic
to continuously monitor and police traffic between chiplets to ensure authenticity and
system integrity. Although promising for some applications, the active interposer brings
yield challenges as it must be large enough to interface to all chiplets. Another 2021
paper [XMYW?21] proposes that circuits connected to FPGA outputs may be able to detect
impedance changes caused by the presence of a physical probe on the output wire, and the
authors note that a similar technique could be considered in the future for authentication,
but no experiments in this direction are performed.

Commercially-available systems that address multi-die system security largely rely
on cryptographic protocols to create secure channels between dies. One example is
CEVA Fortrix [CEV22], which features secure message passing, authentication, attestation,
and firmware download while protecting against firmware copying/tampering, chiplet
counterfeiting and chiplet disabling/modifying. The use of already-trusted cryptographic
protocols is attractive in that approach, but the substantial area cost of the computations
performed likely limits it to the subset of applications that can justify paying a high cost
for security. Nonetheless, the emergence of these competing solutions supports the high
interest in finding ways to establish system level security from chiplets, and our work
represents a novel and low-cost technology to support this objective based on common
features of chiplet interfaces.

2.3 Security in Chiplets

The modularity and interoperability that enable heterogeneous integration with chiplets
also has implications for how they can be attacked, and how they must be protected. The
chiplet attack surface is unlike that of a traditional single-die SoC in which there is a clear
distinction between on-chip and off-chip threats, with a well-defined perimeter separating
the two. Oversimplifying a bit, one can consider the world beyond the I/Os of a single-die
SoC as untrusted and beyond the control of the vendor, and within the die is the domain
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of what can be secured; in this framing physical protection techniques such as PUFs or
enclosures are defending against attacks that try to breach the secure domain. On-die
circuitry is not assumed secure by default due to a potential malicious foundry or 34
Party IP, but in this framing an SoC producer can have some confidence that a functional
block will have a consistent neighbor across all instances and across its lifetime. If the SoC
is secured once, and the perimeter is not breached, it likely will remain so. Chiplets, on
the other hand, must operate outside of the castle walls. A chiplet will be re-used across
product lines, and may interface to chiplets created by entities that it does not know or
trust. As such, it is not feasible to assume honest collaboration toward system security, or
that other chiplets will have security-enhancing features such as PUFs.

The critical question, which we try to address in this work, is how can a trusted
chiplet support integrity attestation of a system in which it is one component among many
without special privilege, and without assuming that other chiplets are honest. Relevant
threats in this setting include the possibility that a neighboring chiplet has been changed
across time, or that its communications through an interposer are being probed, spoofed,
subjected to man-in-the-middle attack, and so on. This is a daunting scenario, and without
physical protections it may not be possible to mitigate all threats that are within scope.
Yet we argue in this paper that a novel realization of a delay-based PUF can be an
important primitive toward verifying system integrity, and that it can be accomplished
using capabilities that are already widely available in chiplets.

2.4 Physical Unclonable Functions and Device-Tied Entropy

Physical unclonable functions (PUFs) are circuits that produce outputs using entropy
from the manufacturing process variations of each instance. PUF outputs are persistent
over time, but can be influenced by noise. The source entropy of a PUF generally grows
proportionally to its area, but there are different approaches for generating values from the
available entropy, often termed as strong PUFs or weak PUFs. Strong PUFs; which have a
large space of input challenges, are exemplified by the well-known Arbiter PUF that maps
inputs to outputs according to delay variations of ASIC [GCVDO02] or FPGA [MKD10]
cells. Because each input-output pairing leaks information about the source entropy,
strong PUFs are subject to modeling attacks, in which an adversary uses a set of known
input-output examples to train a model that can eventually predict the PUF output for
any input. Techniques like the lockdown PUF [YHD™'16] aim to get around this problem
by limiting the number of input-output pairings available to the adversary.

Weak PUFs lack a large input space and can therefore be viewed as device-tied constants,
subject to noise. Following early chip-ID circuits [LDT00, SHO07], weak PUFs gained
prominence in the work of Guajardo et al. [GKSTO07] that uses entropy from the unique
power-up states of uninitialized SRAM on FPGAs, and is commercially available through
Intrinsic ID. SRAM values are initialized at power-up on modern Xilinx and Intel FPGAs,
although some workarounds [SGB'10, WG14] attempt to circumvent initialization with
limited success on specific devices. The initial state of flip-flops [MTV08] are highly
biased, and Butterfly PUFs based on cross-coupled latches [KGM™08] can have diminished
uniqueness due to asymmetry in the FPGA routing resources between the latches [MMS10].
Distinct from the earlier FPGA implementations of delay-based arbiter and ring oscillator
PUFs [SDO07], a delay-based weak PUF based on fixed-function FPGA carry chains has
also been explored [And10]. Decay-based DRAM PUFs are also viable and were used by
Tian et al [TXG'20] to study and map the entire Amazon Web Services (AWS) FPGA
infrastructure.

The output of a PUF can be kept secret if it is used as a key in a cryptographic
protocol, which requires error correction to be performed with helper data to compensate
for noise. Protocols such as fuzzy extractors rely on standard error correcting codes
which compromise some entropy. Index-based syndrome (IBS) coding [YD10] is an error
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correction scheme for PUFs with real-valued outputs, in which some of the source entropy
is traded away to obtain highly reliable outputs. Information can be leaked in IBS if
the PUF outputs do not satisfy the assumption of being independent and identically
distributed [BWG15]. Other schemes include the equiprobable quantization methods
explored for the secure physical enclosures of Immler et al. [[ON*18] that make best use
of source entropy.

3 Methodology

The solution that we propose for integrity checking calls for one chiplet to measure the
propagation delays of signals arriving through the interposer from a neighboring chiplet. We
prototype and evaluate our design using a population of Xilinx Virtex Ultrascale+ (VU9P)
FPGAs, which use multiple dies connected through an interposer. To stay consistent we
use Xilinx terminology when describing the design. The chiplets are referred to as Super
Logic Regions (SLRs), and the wires through the interposer as Super Long Lines (SLLs).

3.1 Use Case and Requirements

A PUF implementation such as ours has several security and hardware requirements that
must be satisfied. First, for the PUF itself, the physical structure used to derive responses
should be difficult to clone but easy to measure. Tampering with the structure should
permanently alter its response in subsequent measurements. Inter-die interconnect satisfies
these properties. Thus the basis for security of our PUF is that it derives its entropy from
process variation of the interposer and chiplets. Depending on the application, persistent
memory and hardware primitives for signing, encryption, decryption and verification of
measured delays must be available. We envision our system being used similarly to other
PUFs with an initial enrollment phase in which the device generates and securely stores
the first set of measurements. In the field, measurements would be retaken and compared
to the enrolled data to generate a key or a security flag. Depending on the application,
the measurements can be checked at boot time to authenticate neighboring dies or at
regular intervals to check for probes. We make the assumption that the receiving chiplet is
trusted, but that circuitry beyond its die is not. This assumption is justified by inter-die
wires being physically larger and more exposed than on-die wires, and by the existence
of other techniques that can already address the problem of deriving trust in a single die
using PUFs.

As described in Sections 1 and 2 chiplets present a unique security challenge in that they
expose new attack surfaces that differ from those in monolithic devices. Our work aims to
provide a method through which a die can authenticate its neighbor and verify system
integrity. More concretely, we consider unaddressed threats such as tampering and probing
attacks against chiplet systems on passive interposers. One representative tampering threat
is die-swapping of a transmitting chiplet. To defeat our system an adversary trying to
swap a chiplet must 1) measure the flop-to-flop delays along the transmitter-interposer-
receiver paths, and 2) tune the replacement chip to have the same picosecond-level delays.
Critically, the attacker must perform these tasks without in situ delay measurements
which are known only to the receiver chiplet. Similarly, physical probing represents a real
threat to mitigate within a die, or between dies on a PCB [XMYW21] with circuitry that
detects an impedance change on output wires. We do not experimentally validate ability
to detect probing, but estimates show it is likely that delay changes induced by probing
interposer wires would be detectable. Specification sheets of on inter-chiplet connections
generally claim energy numbers around 0.85 pJ/bit with 0.9V supply [Keh17]. Assuming
negligible short circuit current during switching this equates to 1pF capacitance on the
microbumps and the SLL itself. In comparison, a sophisticated active picoprobe has 0.04pF
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(40fF) capacitance [GGB]. An additional 0.04pF capacitance from probing on a 1pF line
would cause approximately a 4% delay increase, which exceeds the typical between-class
distances of our PUF and should therefore be as detectable as die swapping. There are
other important practical considerations with probing as well, such as the shielding around
the interposer wires, the density of the wires, and that probing may require different
detection criteria that are sensitive to changes in a small number of wires instead of using
an aggregate metric of similarity that considers all wires. While the tasks faced by a
die-swapping or probing attacker appears daunting, we are cautious to note that it is hard
to confidently quantify the capabilities of well-equipped adversaries with state-of-the-art
equipment.

3.2 Measuring Propagation Delay with Dynamic Phase Shifting

Our design for measuring propagation delay relies on clock phase adjustment on the
receiving chiplet. Clock phase adjustment is common for source-synchronous clocking in
chiplets to de-skew a forwarded clock on the receiving die so that the clock will reach the
sampling flip-flops a time coinciding with the center of each bit. Our method, however,
uses the phase adjustment differently, to measure the propagation delay of arriving signals.

Unlike the conservative notion of delay in timing analysis, we define delay to be exactly
the time required for each signal to propagate from the TX flip-flop on one chiplet to the
RX flip-flop on another. More precisely, we define delay to be the time difference (skew)
between the clocks of the TX and RX flip-flops that cause a transmitted rising transition
to be sampled by the receiver as 0 and 1 with equal probability, or in other words as having
a failure probability (psqi) of 0.5. When the clock skew is smaller than the wire delay the
rising transition is more likely to be incorrectly sampled as a 0 (pfqs > 0.5), and when
skew is larger than the wire delay it is less likely to be sampled as a 0 (pfqi < 0.5). The
phase of the receive clock can only be adjusted in discrete steps, so there will not be one
particular step that causes prqi to be exactly 0.5. Instead we measure pyq; across range
of phase steps and then interpolate to infer the phase that would have caused ps.; = 0.5.
The clock skew, in picoseconds, at this inferred phase shift is considered to be the measured
delay of the SLL. The delay of each SLL is measured independently on each chip using
this method.

Note that the setup we use for clock sweeping to measure delay is similar to the principle
of Time-to-Digital Converters (TDCs) based on tapped delay lines. The samples we take
at different clock phases are analogous to the time-shifted samples collected from different
delay taps in the TDC. It is not possible to have multiple taps on each SLL in the Xilinx
FPGA because each SLL has a single fixed endpoint at the input of the RX flip-flop on the
receiving die, which is the reason we use phase sweeping instead of a tapped-delay TDC.

3.3 Design

Following Xilinx’s hierarchy (see Fig. 1b), our design is organized in columns, of which
the general schematic is given in Fig. 2. Six instances of the design are placed on the
FPGA, each with eight Laguna sites on the transmitting and receiving SLRs. Each Laguna
site contains six Laguna cells, which are TX-RX flip-flop pairs dedicated to specific SLLs.
As depicted in Fig. la, the TX flip-flop in one Laguna cell drives the signal through
the microbump connections of its own die, across the interposer wire, and through the
microbump of the neighbor die where it reaches the corresponding RX flip-flop. Our design
includes 48 SLLs per column, and 288 SLLs in total. The 48 SLLs per column represent
a small fraction of the 1,440 SLLs available. Having a relatively low utilization reduces
congestion and simplifies placement, but in principle much higher utilization is possible to
produce a richer delay fingerprint.
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Figure 2: Schematic showing single column of the design. The 48 SLLs are organized in
eight Laguna sites, each with six SLLs. The wide control signals are asynchronous.

As shown in Fig. 2, both SLRs contain pattern generators, and the receive side also
includes additional fault detection logic. The transmit and receive pattern generators are
identical 16-bit LFSRs. Their purpose is to generate a pseudorandom sequence containing
rising transitions to transmit across the interposer while checking for timing faults. On the
transmitting side the pattern generator is producing the value in each cycle that is actually
sent across the interposer. On the receiving side the pattern generator is producing a
fault-free copy of the pattern sent by the transmitter, to determine which samples should
be checked for rising transition timing faults. During a clock sweep, when the receiver
determines that a rising edge was sent, a fault count is incremented if a O-value was
sampled, which indicates a timing fault.

Because the two SLRs are configured as different clock domains, with variable clock
phase over a certain range during clock sweeping, some care is required to ensure proper
synchronization between the two pattern generators. Pipelining is used on the synchro-
nization signal to relax placement and ensure timing constraints can be met within each
SLR. Additionally, a negative edge triggered flip-flop is used to send the synchronization
signal across the clock domain boundary on the negative edge of the transmit clock, which
makes it insensitive to the range of clock phase differences used during the sweep.

3.4 Xilinx and AWS Implementation

We implement the design on Virtex UltraScale+ VU9P FPGAs using Xilinx Vivado IDE.
A floorplan of the implemented design is given in Fig. 3a. The VU9P FPGA contains 3
vertically arranged SLRs with 17,280 SLLs going across each boundary. We implemented
the design locally for testing on Xilinx’s VCU118 development board, which features part
number xcvu9p-flga2104-2L-e. We use AWS EC2 to scale up the experiment for the sake
of measuring uniqueness on a larger population. AWS EC2 F1 instances feature the same
VU9P FPGA (part number xcvu9p-flgh2104-2-i) found in the VCU118 kit. F1 instances
contain additional shell logic to handle communication. The shell logic is confined to the
right six columns of the FPGA, and is visible in Fig. 3a where it is shown in orange and
blue on the right half of the chip.

To avoid Amazon’s logic, the six leftmost Laguna columns are used in our design,
which are denoted in Vivado as x4, x12, x21, x30, x40, and x49. Within each of those
columns, we use every sixth Laguna site; in the default configuration, the sites which are
transmitting across the SLLs are on SLR1 and are denoted as y342, y336, y330, y324,
y318, y312, y306, and y300. By default, one pattern generator and one accumulator are
instantiated per site, and the delays of the six SLLs in the site are measured sequentially.
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Only one SLL per column is active at a time and using the mentioned resources.

Xilinx’s Mixed-Mode Clock Manager (MMCM) macro is used for clock generation as it
allows for phase shifting of clocks at runtime. The phase of the receive clock is shifted,
relative to the forwarded clock from the transmitter, in increments of 14.286 picoseconds.

3.5 Porting Effort

Currently Xilinx is the only vendor that allows unrestricted access to all of its interface
and clock primitives and as such is our experimental platform of choice. We however
foresee that our design could be ported with minimal effort to other manufacturers’
interfaces. Both Intel’s AIB [Keh17] and Open Compute Project’s (OCP) Bunch of Wires
(BoW) [ACF*20] interface incorporate controllable delay lines on the receive side in order
to deskew the forwarded clock. Given these capabilities our method could be adapted to
them by modifying its control logic to interface with the existing delay primitives of each
manufacturer.

4 Analysis of SLL Delays

Our proposed PUF, which is covered in Sec. 5, is a differential design that uses entropy
from delay variations in SLLs. To be used as part of a PUF, the SLL delay variation across
chip instances should exceed the delay variation across trials on a given instance. Before
getting to the PUF, we first analyze in this section the delays of the SLLs themselves.
The analysis performed in this section is intentionally anecdotal; its purpose is to give
readers an intuitive understanding of the characteristics of SLL delays, as background for
the proper analysis that follows in Sec. 5.

The heatmap in Fig. 3b shows the measured delay values of the 288 SLLs, from a single
characterization trial on a single chip. The mean and standard deviation across the 288
SLLs are 673.4 ps and 17.4 ps respectively. The bar graph across the top of Fig. 3b shows
the average delay of the 48 SLLs within each column. The bar graph along the right side
shows the average delay for each of the 48 SLLs, averaged across all six columns.

4.1 Delay Differences Across Trials and Instances

Fig. 4a shows the mean delay of the 288 SLLs across 20 instances, which can be viewed as
a simple representation of the typical delay for each SLL. Fig. 4b shows the delay difference
between the trial in Fig. 3b and the typical delays from Fig. 4a; across the 288 SLLs the
differences have a mean and standard deviation of 14.9 ps and 6.6 ps respectively. It is
apparent from the figure that the measured SLL delays in the trial are generally higher
than typical, but that the difference is not uniform, which implies some amount of random
variation. Fig. 4c is the difference between the example trial of Fig. 3b and the average
delays across 100 trials of that same chip instance; the mean and standard deviation are
0.51 ps and 0.52 ps respectively, which gives an indication that the impact of noise is
relatively low.

4.2 Distinguishing Useful Variation from Bias

In the typical delays of Fig. 4a, one can see patterns that suggest skew or bias associated
with the column, and with the cell within each site. The consistently positive delay
differences in Fig. 4b also indicate that there is a bias associated with the overall speed
of a given chip. One can reasonably expect the biases to be additive, meaning that the
expected delay of an SLL can be predicted as the sum of its biases. To understand the
significance of these factors, we fit the experimental data to a model [PVGT11] that
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Figure 3: Floorplan shows the six circuit columns spanning SLR1 to SLR2 (a). Heatmap
in (b) shows the measured delay of all 288 SLLs from a single trial, organized by column
and site. The bars above show the average delay within each column, and at right show
average delay of the 48 SLLs across all columns.

describes delay of each SLL as additive with respect to its chip, column, site, and cell. The
model is of the form Xw = y, where w represents the unknown bias associated with each
feature. The model is fit to a dataset in which y is a column vector with 5,760 SLL delays,
corresponding to the 288 SLLs on each of 20 FPGA instances; the delay used for each SLL
is the mean across 100 trials to reduce the impact of noise. Matrix X is 5760 x 40, where
the 40 features are (xg,...,219) to denote the bias of the FPGA chip instance on which
the SLL delay is measured, (x9g,...,Z25) to denote the bias associated with the column of
the SLL, (226, ...,2s3) to denote the bias associated with the site of the SLL within the
column, and (x34,...,Z39) to denote the bias associated with the cell of the SLL within
its site. Each of the 5,760 SLL delay measurements is associated to one chip, one column,
one site, and one cell, and therefore every row of X has four 1-values and 36 O-values.

Ridge regression finds weights w that minimize Eq. 1, which are plotted in Fig. 5a.
The weights associated with the column and cell indexes of the SLLs match well to the
observed data across the top histogram and right histogram of Fig. 4a. The delay does not
appear to vary much across sites, and a large part of the overall SLL delay is attributed to
the bias of the FPGA instance as a whole. Importantly, there is a significant component
of delay that is not explainable by the model, which is consistent with being random
variation. Fig. 5b shows a histogram of the 5,760 residual delays, which are the differences
between the measured SLL delay and the SLL delay predicted by the model. The standard
deviation of the residual delay is 7.309 ps. Fig. 6 shows the same 5,760 residual delays,
but now plotted according to the SLL position on each chip instead of being summarized
in a histogram.

IXw =yl + allwl3 (1)

Note that the model does not explicitly account for bias that might be caused by
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Figure 4: Measured SLL delays collected from EC2 F1 instances. (a) shows mean delays
of each SLL across 20 chips. (b) and (c) show how much the delays from Fig. 3b deviate
from the values in (a), and from the mean delays of the same chip that produced Fig. 3b.
Note that (b) and (c) have different scales.

differences in routing through the interposer or differences in routing on the SLR to reach
the appropriate location of the arrayed microbump that connects the SLR to the interposer.
The good fit of the model, and the lack of any consistent patterns in Fig. 6 imply that
there is not a significant bias aside from what is captured in the model. This indicates
either that the unaccounted-for routing is uniform across all connections, or that it has an
asymmetry that mirrors how the SLLs are organized into columns or cells. In the latter
case, part of the column bias or cell bias discovered by the model is actually accounting
for the asymmetry.
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Figure 5: Plot shows regression model coefficients and residual delays. The residual delays
show that the model cannot explain all of the variation between the SLL delays. The
standard deviation of the residuals is 7.309 ps.

5 Using as a PUF

The intended use case for our PUF is a protocol by which a trusted chiplet can obtain a
physical signature to check the integrity of its system and the authenticity of its neighboring
chiplet. The trusted chiplet (shaded red in Fig. 2) initiates the protocol by prompting the
untrusted chiplet (blue in Fig. 2) to send back a known pattern through the interposer.
The pattern itself is non-secret and known to both chiplets. While the pattern is being
transmitted, the receiver performs clock sweeping as described in Section 3.2 to measure
the PUF and extract a delay fingerprint that is caused by the physical variation of the
two chiplets and the shared interposer.
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Figure 6: Across 20 chip instances, the difference between measured delays on a chip
and the delay from the regression model; in other words, the residual of the model. The
histogram in Fig. 5b summarizes the same delays.

5.1 PUF-Based Delay Fingerprints

The circuit that generates the fingerprint is a type of weak PUF. As is typical of weak
PUPFs, it comprises repeated instantiations of a unit cell that each operate independently
of the others. Our PUF cell is not based on measuring delay of a single SLL; instead it is
a differential delay measurement.

5.1.1 Motivating Principle of Differential PUF Cell

Sec. 4 analyzed the delays of individual SLLs to give the technical background for our PUF
design; we henceforth refer to those measurements as single-ended delay measurements.
We now explain why single-ended measurements are unsuitable as the basis for a PUF,
and we then present our differential PUF cell. The major limitations of single-ended delay
are as follows:

1. In single-ended delay measurement, delay variation in the clock network aliases to
delay variation in the SLL itself. Aliasing can therefore cause the uniqueness of the
SLL delay to be overestimated. In fact, aliasing is observable in Fig. 6; in that figure
the difference between the measured delays and the delays predicted by regression
show spatial patterns coinciding with clock distribution. The six SLLs in each site
tend to be faster or slower as a unit, which would occur if the delay variation is
actually coming from the clock node, because the six SLLs in the site all come from
TX flip-flops connected to the same clock tree node, and the corresponding six RX
flip-flops similarly all connect to the same clock-tree node. Additionally, columns
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Figure 7: Delay drift across 100 trials on a single chip instance, using both single-ended
delays and the PUF outputs. The differential nature of the PUF mitigates drift caused by
factors that are common-mode to its two SLLs.

tend to be faster or slower as a unit, which might be explained by delay variation at
a point further up the clock hierarchy.

2. Single ended delay is based on comparing an SLL to a clock, which adds unwanted
noise because the SLL and the clock are dissimilar. Specifically, the clock path
includes the phase compensation circuit and it is carried on a clock tree with the
goal of balancing skew at leaf nodes, unlike the SLL which is a direct and dedicated
path straight between two flip-flops with the goal of minimizing delay. Because of
their dissimilarity, they will respond differently to environmental fluctuations.

5.1.2 PUF Cell

Our PUF unit cell is given in Fig. 8. The cell comprises two SLLs and the TX and RX
flip-flops of the Laguna cells on both ends of each SLL. We pair the six SLLs of each Laguna
site into three PUF cells using the arbitrary pairings (0,1), (2,3), and (4,5). Because each
Laguna site has a single input for TX clock and for RX clock, the two SLLs of each PUF
cell within the site will be commonly impacted by noise and variation associated with
clock distribution (shown in black in Fig 8), which reduces the impact of clock on the PUF
response. To obtain the response of each PUF cell, the single-ended delay of each SLL
is measured by clock sweeping as before, and the output of the PUF cell is simply the
difference between the two measured delays.

Fig. 7 shows the stability of the single-ended delays (Fig. 7a) and the stability of PUF
outputs (Fig. 7b) across 100 trials. In each case, the plotted values are the difference
between a measurement (SLL delay or PUF output) in one trial and the average of that
same measurement across all 100 trials. The single-ended delays (Fig. 7a) tend to increase
and decrease together, presumably due to environmental fluctuations. The PUF outputs
(Fig. 7b) are stable and do not drift significantly because common changes to the delay of
the two SLLs in the cell will cancel out, which illustrates the benefit of using the differential
measurement.

5.2 Uniqueness and Reliability

The distribution of between-class and within-class distances of the PUF outputs are shown
in Fig. 9. Each distribution is obtained by making 10,000 random comparisons using a
dataset of 100 trials from 20 chips. Value D, s represents the output (differential delay)
in trial ¢ of PUF cell at location s. When comparing outputs from individual PUF cells
(Fig. 9a), the mean distance between trials from the same chip (within-class distance) is
0.472 ps, and between trials from different chips (between-class distance) is 5.922 ps. When
comparing trials of entire chips, using the total distance between the 144 PUF cells on each
chip as the metric, the mean within-class distance is 68.331 ps, and the mean between-class
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Figure 9: Cumulative distribution of within-class and between-class distance for individual
PUF cells (a) and for entire chip instances when all 144 PUF cells are used (b).

distance is 847.713 ps. Across the 10,000 randomly chosen comparisons of each type, the
maximum within-class distance was 123.992 ps and the minimum between-class distance
was 686.071 ps; the separation between these values is consistent with the PUF being a
reliable and unique fingerprint.

5.3 Impact of Temperature and Voltage Disturbance

To study reliability in an extreme scenario, we add 38,400 power wasting ring oscillators
(ROs) to each of the three SLRs (see Fig. 10a). While multiple trials of PUF data are
being collected over 30 minutes, increasing numbers of ROs are activated, which is known
to disturb supply voltage and cause heating. The die temperature during the experiment
(1st subplot of Fig. 10b) is logged using the provided on-die temperature sensor; the
temperature stops increasing when the fans turn on at approximately 54°C. We repeat
the analysis from Fig. 7 to examine how the SLL delays and PUF outputs are changing
over this time. The SLL delays (2nd subplot of Fig. 10b) increase with the measured die
temperature, jumping higher each time more ROs are activated. The SLL delays increase by
an average of 24.610 ps (3.70%) from the first trial to the last over a temperature difference
of 24.57°C. While the average sensitivity of the 288 SLLs is therefore 1.002 ps/°C, the
sensitivities are not uniform across SLLs, but instead are distributed between 0.645 ps/°C
and 1.384 ps/°C. Due to the non-uniform sensitivity of SLL delay to temperature, the
PUF outputs drift over the course of the experiment (3rd subplot of Fig. 10b), with the
direction of drift depending on which of the two SLLs is more sensitive to temperature.
If the PUF outputs are used without compensation, within-class comparisons made
across a large temperature disparity approach the between-class distances under nominal
conditions (Fig. 11a). Fortunately, the drift of each SLL is notably linear with respect to
temperature, which allows for a simple compensation to make the PUF robust across a
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Figure 10: Performance across temperature. (a) shows the PUF design instantiated
together with 38,400 ROs on each SLR used to create heating. (b) shows how the SLL
delays and the PUF outputs change across the trials as the chip heats up.

wide temperature range. It is obvious that one way to compensate is to collect temperature
data during PUF measurement, but this assumes the availability of a sensor in a location
able to make representative measurements. Instead we compensate the delay of individual
SLLs based on the amount of aggregate SLL delay change between two measurements. We
find for each SLL a compensation factor, which is a unitless quantity that denotes how
much its own delay changes relative to a certain amount of average delay change across all
SLLs. An SLL with typical sensitivity will have a compensation factor of 1.0, meaning
that it is expected to get 1 ps slower when the average delay across all SLLs increases by
1 ps. More temperature sensitive SLLs will be above 1.0, and less sensitive SLLs will be
below 1.0. When two sets of measurements are taken at different temperatures, and they
therefore have different mean SLL delays, the 2nd is compensated to the mean SLL delay
of the 1st by adjusting the SLL delays according to their compensation factors, which
allows for a robust comparison between the two measurements. Note that temperature
is not used in the compensation. The compensated PUF outputs are shown in the 4th
subplot of Fig. 10b, and the distribution of within-class distances are shown in Fig 11b,
indicating that with simple compensation, comparisons across the largest temperature
disparities are only slightly degraded.

5.4 Aging

Aging is a phenomenon that can affect the long-term reliability of delay PUFs or SRAM
PUFs. We test the impact of aging on our design by randomly dividing 288 SLLs into
two groups, and aging the two groups in opposite directions. In one group, the SLLs are
pulled low when idle between measurements, and in the other the SLLs are pulled high
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Figure 12: Average delay drift measurements for two groups of SLLs, which are aged using
opposite states. The temperature is kept at 25°C for the first 1.5 hours, and then raised
to 50°C. The delays fluctuate across time and temperature as expected, but there are no
differences between the delay changes of the two groups due to their aging condition.

between measurements. We then run our design and collect samples at 2 minute intervals.
To accelerate aging, the experiment is performed in a TestEquity Model 115A [the]
Temperature Chamber (Fig. 12b) and the chamber temperature is raised from 25°C to
50°C halfway through the experiment. If NBTI or PBTI had a significant effect one would
expect the two groups to diverge with time. The results of our experiment (Fig. 12) show
no such evidence of aging, which implies that aging is having little or no impact.

5.5 Quantifying Entropy Source

We conduct a set of targeted experiments to understand better the performance of the
PUF cell and identify the source of its entropy. In each of these experiments, we measure
the correlation between values taken under scenarios in which there is a specific difference
applied to the design. We use a population of 20 EC2 F1 instances in each experiment.
The outputs of the PUF cells do not have a mean value of 0, because the 2 SLLs in the PUF
cell will generally have different typical delays, as was shown in Sec. 4 when discussing SLL
delays. To ensure that the correlation is not falsely inflated by the bias, in this subsection
we first de-bias the PUF outputs by subtracting from the PUF outputs of each chip, the
mean output of the same PUF across the other 19 chips.
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clock routing is changed; (b) where a rising transition is replaced by a falling one; and (c)
where the direction of the propagating signal is inverted.

5.5.1 Sensitivity to Changes in Clock Skew

The first experiment is to evaluate our hypothesis that the differential measurement of the
PUF causes clock variations to be common-mode and thus having minimal impact on the
PUF outputs. We mimic a massive change in clock skew by creating an additional design
variant in which the MMCM of the receiver has been moved across the SLR boundary,
which is observed to greatly change the clock path and its skew according to the timing
report. We then deploy the two variants sequentially to the same 20 EC2 F1 instances,
and compare the results of the 144 PUF cells across the variants as through they come
from the same design. The scatterplot in Fig. 13a evaluates the correlation between the
de-biased versions of the same PUF cells on both chips. The strong positive correlation of
0.86870 indicates the clock has a negligible impact on the PUF outputs, which implies
that the variability observed in the PUFs comes from the SLLs themselves, as intended.

5.5.2 Rising vs Falling Transitions

For the scatterplot in Fig. 13b, the design is configured so that it can be set to measure
delay based on rising transitions as usual, or can be inverted to measure delay based
on timing faults from falling transitions. The results show a weakly positive correlation,
with a p-value of 0.0037 indicating that the finding is significant. The weakness of the
correlation can be explained by the rising and falling transitions being logical complements
of each other; the pull-up transistor that drives the rising transition is distinct from the
pull-down transistor that drives the falling transition, so any entropy associated with the
driver will not be common across the two scenarios. Similarly, the receiver flip-flop will
have asymmetry in how it samples each transition.

5.5.3 Driving Same SLL in Opposite Directions

Each interposer wire can be driven in either direction depending on whether the TX or
RX flop of each Laguna cell is activated (see Fig. 8). An interesting case is to evaluate
whether there is correlation across opposite directions. The scatterplot shown in Fig. 13c
again finds a weakly positive correlation, slightly weaker than between the rising/falling
comparison for a single direction. As in the previous case, the transistors that drive the
wire are again distinct for the two cases, but now they also differ in position which may
contribute environmental differences that further reduce similarity.
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5.6 Modeling of False Positive and Negatives

One of our security objectives is to authenticate the neighboring chiplet, and for that
application it is important to prevent false negatives, in which a chiplet is replaced by
another but accepted as authentic, and false positives, in which an authentic chiplet
is labeled inauthentic. Toward that goal, our within-class and between-class distances
(Fig. 9b) and the large margin between them are promising. We observe that within-
class and between-class distance distributions are approximately normally distributed as
illustrated in Fig. 14a, and use the fitted normal distributions to estimate false positive
rates and false negative rates of a larger population. The mean and standard deviation
are 68.1 ps and 9.8 ps respectively for within-class comparisons, and 848.5 ps and 68.6
ps for between-class comparisons. The achievable tradeoffs of false positives and false
negatives are shown in Fig. 14b. A threshold of 150.31 ps causes false positive and false
negative probabilities to be equal, with both probabilities being 2.259E-24 at that threshold.
Although the probability of misclassification is already low, it can be further reduced by
using a larger number of PUF cells.
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Figure 14: Fitted distribution lines for within-class and between-class distributions from
Fig. 9b and type I and type II error probabilities across classification thresholds.

6 Performance

6.1 Resource Utilization and Power

Fig. 15a offers a detailed summary of resource utilization. Our design is lightweight and
utilizes only 3,136 LUTs and 7,933 flip-flops, which is 0.27% and 0.34% of all the available
resources respectively. It utilizes two of the 30 MMCM, which is the highest utilization
share among any resource type. Similarly, only 288 SLLs that span across two SLRs are
utilized for the PUF, with additional 48 wires reserved for asynchronous control signals.
This accounts for less than 0.2% of the total number of SLLs available at each crossing,
although it may be desirable to increase the number of SLLs used to offer stronger security.
Due to its small footprint the design is also efficient, consuming only 0.815 W, nearly 90%
of which is static power dissipation. The power report summary generated by Vivado is
displayed in Fig. 15b.

6.2 Speed

Currently, our PUF design is configured to have a single pattern generator and a single
accumulator per Laguna site, meaning only one SLL in each site can be scanned at a time.
Once scanned, the values from the accumulator for each SLL can be read out sequentially
for processing. In typical fashion one can significantly reduce the time needed to measure
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Figure 15: Resource utilization and power estimate summaries
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all the SLLs by trading away area to increase parallelism, or by reducing the number of
edges transmitted. Fig. 16a and Fig. 16b help visualize the area and time tradeoffs. More
specifically, in Fig. 16a one sees that, experimentally, reducing the number of samples
collected for each SLL will loosen its delay distribution, which in turn means that the
error rate will increase and detection sensitivity will suffer; the discreteness in Fig. 16b
arises because there are a relatively few delay numbers that can be measured when there
are a small number of possible faults at each clock phase. Fig. 16b on the other hand
appears more attractive, as increasing area can dramatically decrease latency by unlocking
parallelism, without hurting the PUF sensitivity as was the case with shortening the
applied pattern length for each SLL.

Finally, one can further cut down runtime by doing a focused phase sweep, meaning
instead of sweeping every possible phase one can only sweep a small number around the
expected delay value of each SLL. Because dynamic phase shifting is deterministic and
consumes 12 cycles to increment or decrement the phase of the controlled clock, focused
phase sweeping also scales linearly.

7 Conclusions

To get around reticle limits and cope with the need for larger and larger chips many
manufacturers are switching to the chiplet model. With new possibilities and challenges of
building devices by stacking multiple dies also comes new security concerns and oppor-
tunities. PUFs have long been used for authentication of chips, however with multiple
chiplets it is not sufficient to verify integrity of an individual die. We present a novel
method of chiplet neighbor authentication and tamper sensing by building a PUF out of
the interposer wires that connect two dies. We implemented our PUF on Xilinx VU9P
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FPGAs and demonstrated its effectiveness by scaling up our experiments using AWS EC2
F1 instances. With minimal overhead and all the necessary implementation resources
already available our PUF design can potentially be adapted to inter-chiplet buses from
other manufacturers in future work.
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