
SAT-aided Automatic Search of Boomerang
Distinguishers for ARX Ciphers

Dachao Wang1 Baocang Wang1 Siwei Sun2,3

1State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China

2School of Cryptology, University of Chinese Academy of Sciences, Beijing, China

3State Key Laboratory of Cryptology, P.O. Box 5159, Beijing, China

FSE 2023, March 21, 2023

Background: Boomerang Distinguishers

Under an independence assumption, these two differential
characteristics can be connected.

The whole cipher is seperated into two parts.

Background: Boomerang Distinguishers

To analysis the connectivity of two characteristics, new
cryptanalysis is put on the middle part.

A new part is seperated out.

Typically, cryptanalysis on is reduced to that
on the non-linear operations.

Background: Boomerang Tables

S-box

S-box S-box

S-box

Boomerang Connectivity Table (BCT)

Variants of BCT [DDV20]

Motivation

The previous result was given by Cid et al..

In fact, the result can be derived from BCT
on S-boxes. View the modular addition as
a special S-box:

Motivation

The BCT is too large!

Is there a fast method to compute one entry?

Can we construct SAT/MILP models for it?

Any new results on ARX ciphers?

Our Contributions

1 Design a dynamic programming algorithm to compute the BCT and
its variants of the modular addition.

2 Construct SAT models for these tables.

3 Take Speck and LEA as examples, and improve the previous results.

Compute BCTn

Relations between modular addition (subtraction) and XOR

Function

Function

Compute BCTn

Compute BCTn

Every equation is a restriction on and .
What about and ? FREE!

The four bit string can only take 8 possible values:

Compute BCTn

...

...

Compute BCTn

NEW GOAL: how to compute function ?

Compute BCTn

...

...

Compute BCTn

...

...

Denote whether the chosen values of and are valid.

Compute BCTn

Recursive definition again!

Compute BCTn

Theorem 2

Let . For , denote and

Then

Compute BCTn

Booleanize (whether is non-zero or not)

Compute BCTn

check whether the BCT entry is non-zero or not.

Modelling: Partial BCT

If, for all , we have , then

 Note that: .

Modelling: Partial BCT

If, for all , we have , then

A Heuristic Trick (Partial BCT)

If out of these equations are required to be satisfied, the resulting
BCT entry would be . That is, just express restrictions

 “for all , “

as boolean expressions.

Modelling: Partial BCT

8 8 8 8
8 0 2 6
8 4 2 4
8 2 6 2

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

A Heuristic Trick (Partial BCT)

If out of these equations are required to be satisfied, the resulting
BCT entry would be . That is, just express restrictions

 “for all , “

as boolean expressions.

expect: with

Modelling: Partial BCT
A Heuristic Trick (Partial BCT)

If out of these equations are required to be satisfied, the resulting
BCT entry would be . That is, just express restrictions

 “for all , “

as boolean expressions.

Fact: 1 Currently, we lack enough knowledge about .

2 The resulting partial BCT still contains values with .

3 Our experiments showed that the models always return BCT entries
with values around .

Modelling: The Complete Model

Modelling: The Complete Model
A Heuristic Trick (Partial BCT)

If out of these equations are required to be satisfied, the resulting
BCT entry would be . That is, just express restrictions

 “for all , “

as boolean expressions.

Modelling: The Complete Model

Framework 1

1 Set the product of the probabilities of two differential characteristics as the
objective function and maximize it.

2 Compute the probability of the switch and obtain the total probability.

3 Tweak the threshold and repeat step 1 and step 2 until a desired boomerang
distinguisher is found.

It is fast but may miss better characteristics.

Suitable for long characteristics or complicated switches.

Modelling: The Complete Model

Framework 2

1 Set the product of the probabilities of two differential characteristics as the
objective function. Set the threshold to 0. Then, maximize it. This step
returns the upper bound of the probability of boomerang distinguishers.

2 Set the threshold and the upper bound of the probability and enumerate all
the charateristics. Take the largest cluster and enumerate all possible
characteristics in it. Compute the probability of the cluster and return.

3 Tweak the threshold and upper bound. Repeat step 2 until a desired
boomerang distinguisher is found.

It is slow but can take the advantage of clustering effect.

Suitable for short characteristics or simple switches.

The Results

Our Technique VS ARXtools

1 The dynamic programming algorithm and ARXtools are based on the same
property of modular additions, but they are constructed from two different
perspectives.

2 From our perspective, more mathmatical properties behind the modular
addition are revealed.

3 When estimating probabilities, ARXtools is faster and more precise.

4 Our technique is capable of searching characteristics, while ARXtools cannot.

Conclusion

1 A dynamic programming algorithm to compute the BCT entries of the
modular addition.

2 SAT models for partial BCT, LBCT, UBCT, and EBCT.
3 New results on Speck and LEA.

Results:

1 The current computations of BCT and its variants are not convenient to be
modelled.

2 The models for switches are large.
3 Optimal distinguishers are still unknown.

Limitations:

4 Comparing with ARXtools, our computation of probabilities are slow.

All the codes are publicly available at https://github.com/0NG/boomerang_search

Thank you very much for your attention!

