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ARITHMETIZATION-ORIENTED SYMMETRIC PRIMITIVES

e Advanced protocols (Zero-Knowledge proofs, MPC, FHE...) need primitives with
a “simple” arithmetic description (e.g. using x — x> as the main nonlinear
function), sometimes over F for a specific large g.
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ARITHMETIZATION-ORIENTED SYMMETRIC PRIMITIVES

e Advanced protocols (Zero-Knowledge proofs, MPC, FHE...) need primitives with
a “simple” arithmetic description (e.g. using x — x> as the main nonlinear
function), sometimes over F for a specific large g.

Classic Arithmetization-Oriented
Binary operations Arithmetic operations
Algebraically complex (for cheap) Algebraically simple
Small field (Fs) Large (sometimes prime) field (F)
e.g. AES, SHA-3 e.g. MiMC, Rescue
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ARITHMETIZATION FOR ZERO-KNOWLEDGE

® Implemented using “constraint systems” (R1CS, AIR, Plonk...).

® Less constraints = Better performance.

Function — Arithmetic circuit — Set of constraints

6/32



OVERVIEW OF RESCUE AFFINE SPACE CHAINS WEAK DESIGNS AND WEIRD DESIGNS CONCLUSION
0@00000 00000000000 00000000 00

ARITHMETIZATION FOR ZERO-KNOWLEDGE

® Implemented using “constraint systems” (R1CS, AIR, Plonk...).

® Less constraints = Better performance.

Function — Arithmetic circuit — Set of constraints

AES
— 3 1/3

Security Low degree High degree High degree

Performance Few constraints Many constraints Few constraints
(Because low degree inverse:

y =x%vs y* =x)
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RESCUE-PRIME

® Defined in F, with p prime > 254, Here we focus on m =3, ¢ = 1 and p ~ 225°.

Ch C1 O C3 C4 Ch
S0 X JD o /ULJ
s1 }x”{ M = B M !
1
2 Ax Y S xa S

Two steps of RESCUE for m = 3 (repeated N > 8 times).

® Defined for any MDS matrix M and round constants c;.
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RESCUE’S DESIGN CHOICES

1
Alternate x® and x« for resistance against algebraic attacks.

Low verification cost, high degree overall.

x“ has good cryptographic properties (APN for o = 3).

The standard wide-trail strategy is used.

Main motivation: Are the usual security arguments sufficient?
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DIFFERENTIAL UNIFORMITY

DEFINITION
Differential uniformity of a function F:

5(F) = max {F(x+0) = F(x) = 3 st x & (E,)"}]

— This quantity must be minimized.
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HiGH DIFFERENTIAL UNIFORMITIES IN RESCUE

p=11,a=3
p=13,a=5
p=17,a=3
p=19, a=5
4 p=23,a=3
p=31,a=7
p=37,a=5
p=41,a=3
3 p=43,a=5
p=47,a=3
p=53,a=3
p=59, a=3
p=61, a=7
2
1

Number of rounds

Graph taken from eprint.iacr.org/2020/820.
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HiGH DIFFERENTIAL UNIFORMITIES IN RESCUE

® The cause? Affine spaces of dimension 1 mapped from one to another.
® Write elements of a+ (v) as a+ Xv (X € F)).
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® The cause? Affine spaces of dimension 1 mapped from one to another.
® Write elements of a+ (v) as a+ Xv (X € IFp).
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HicH DIFFERENTIAL UNIFORMITIES IN RESCUE

8(F) = max [{F(x+0) = F(x) = st. x € (F,)"}].

a\y [(eX+f
emr (2)- (510)
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HicH DIFFERENTIAL UNIFORMITIES IN RESCUE

8(F) = max [{F(x+0) = F(x) = st. x € (F,)"}].

a)  [eX+f
emr(3) - (21)

)l

e(X+1)+f eX +f
gX+1)+h) \gX+h
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AFFINE SPACE CHAINS

Note a + <v> :={a+ Xv such that X € Fp}.

ao—|—<Vo> —i—> a1+(v1> ——f—> —i—) aN+(vN>

CONCLUSION
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OVERVIEW OF RESCUE AFFINE SPACE CHAINS
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MAIN IDEA
C G &
S0 jxa CLJ
S1 ]Xa M !
2 X% !
RESCUE round.
S X X 0 1
si|=|vX| —|veX¥|=]0]+X|v"
S a a“ a“ 0

This is the most important part! It only relies on the fact that the Sbox is a monomial.
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SEPARABLE AFFINE SPACES

DEFINITION
An affine space of dimension 1 E is separable if there exists a and v such that:

E=a+ (v) and Vo<i<m-1, a-vi=0.
Equivalently, E=a+ (v) and supp(a) Nsupp(v) = @.
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SEPARABLE AFFINE SPACES - EXAMPLES

0
supports).

° <1> + < (2) > is a separable affine space (these a and v have disjoint
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SEPARABLE AFFINE SPACES - EXAMPLES

0
supports).

° <1> + < <(1)> > is a separable affine space (these a and v have disjoint

0 1\ . . A ,u .
° <1> + < <1> > is not: its representants are the ()\ n 1) + < (M) > with p # 0.

A 0
= : i |
—> We would need A4 1 ol not possible!
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SEPARABLE AFFINE SPACES - EXAMPLES

° <1> + < <(1)> > is a separable affine space (these a and v have disjoint

0
supports).
o (0 + < 1 > is not: its representants are the A + < H > with © # 0
1 1 ' A+1 1 '
A 0 .
—> We would need = : not possible!

NIE
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SEPARABLE AFFINE SPACES - EXAMPLES

° (é) + < <(1)> > is a separable affine space (these a and v have disjoint

supports).

0 1\ . . A ,u .
° (1) + < <1> > is not: its representants are the ()\ n 1) + < (M) > with p # 0.

A 0
= : i |
—> We would need A4 1 ol not possible!

o (;) + < <_01> > is separable: it is also represented by (g) + < <_01) >
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RESCUE round.

0 1 0 o)) 1
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MAIN IDEA
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Mlo|+]e +<I\/I v >
a“ c3 0

For this space to be separable, we need that there exists A € I, such that

1 0 c1 1
Mlv¥|l and M| O |+ ]| + M| ve
0 a“ C3 0

have disjoint supports.
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MAIN RESULT

THEOREM

® The image of a separable affine space a + (v) by a round of a monomial SPN is
an affine space.
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MAIN RESULT

THEOREM
® The image of a separable affine space a + (v) by a round of a monomial SPN is
an affine space.
® This image is still separable if and only if there exists \ in IF, such that:

Vi € supp(Mo S)(v), ¢ = A(Mo S)(v)i — (Mo S)(a);
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To illustrate the limits of classical arguments in the AO context:

® STIR, a weak instance of RESCUE.
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OUR DESIGNS

To illustrate the limits of classical arguments in the AO context:
® STIR, a weak instance of RESCUE.

® SNARE, a tweakable cipher with a secret weak tweak. Directly based on the
MALICIOUS framework (Peyrin & Wang, 2020).
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OUR DESIGNS

To illustrate the limits of classical arguments in the AO context:
® STIR, a weak instance of RESCUE.

® SNARE, a tweakable cipher with a secret weak tweak. Directly based on the
MALICIOUS framework (Peyrin & Wang, 2020).

® AES-like ciphers where we can introduce and control differential uniformity spikes.
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OUR DESIGNS

To illustrate the limits of classical arguments in the AO context:

® STIR, a weak instance of RESCUE.

® AES-like ciphers where we can introduce and control differential uniformity spikes.
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STIR

® Based on RESCUE.

® MDS matrix M and round constants ¢ are carefully chosen to impose one affine
space chain over the whole permutation.

Ch C1 ¢ C3 C4 Cy
) e /J( 1 /’L
% P N
5 a M Van 1 M VY
1 X N e N
S el Vany 1 VY
1 % X o N
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STIR
0 vi 0 vi 0 vy
CO) +< \62 > — ;)3 +< \:)é > — . — 8 +< ‘E)é/ >

Yields p = 254 solutions to the CICO (Constrained Input Constrained Output)
problem. This breaks security arguments in sponge constructions.
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AFFINE SPACE CHAIN VS AFFINE FUNCTION

STIR and SNARE are based on affine space chains.
Having an affine space chain doesn't mean that the function itself is affine.

In the beginning we measured high differential uniformites because the function
itself is affine on these subspaces.

Can we recreate that?

a;+Xvy — ar+ (X”’ + )\)Vz — a3 + (Xu + )\)%V;),
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MORSE CODE WITH DIFFERENTIAL UNIFORMITY

® Same thing as RESCUE, but with elements over [F2» and the inverse function
x — x~ 1 as an Sbox.

Ch C1 ¢
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MORSE CODE WITH DIFFERENTIAL UNIFORMITY

Idea: Same strategy as STIR, but make it so that the mapping from the input to
output affine space is itself affine every 2 or 3 rounds!
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MORSE CODE WITH DIFFERENTIAL UNIFORMITY

Idea: Same strategy as STIR, but make it so that the mapping from the input to
output affine space is itself affine every 2 or 3 rounds!

® For a 2-round delay, the coefficient X of the affine space basis verifies
X — X71 — X (Case A =0).
® For a 3-round delay we use the following identity in Fan:
X1+ T=X+1)1+1
¢ High differential uniformity every 2 or 3 rounds (controlled by our choices of ¢; ).
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CONCLUSION

® Bad choice of round constants may lead to affine space chains, but for random
round constants this is unlikely.
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CONCLUSION

® Bad choice of round constants may lead to affine space chains, but for random
round constants this is unlikely.

® Our weak designs satisfy state-of-the art security arguments (APN Sbox, MDS
matrix, wide-trail strategy...). Usual security arguments are not sufficient in the
AO context.
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® Bad choice of round constants may lead to affine space chains, but for random
round constants this is unlikely.

® Our weak designs satisfy state-of-the art security arguments (APN Sbox, MDS
matrix, wide-trail strategy...). Usual security arguments are not sufficient in the
AO context.

® The principles behind these techniques are applicable to other AOPs, like Arion-7
and Griffin, and were exploited to break them (see eprint.iacr.org/2024/347
on “Freelunch Attacks”).
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CONCLUSION

® Bad choice of round constants may lead to affine space chains, but for random
round constants this is unlikely.

® Our weak designs satisfy state-of-the art security arguments (APN Sbox, MDS
matrix, wide-trail strategy...). Usual security arguments are not sufficient in the
AO context.

® The principles behind these techniques are applicable to other AOPs, like Arion-7
and Griffin, and were exploited to break them (see eprint.iacr.org/2024/347
on “Freelunch Attacks”).

THANK YOU FOR LISTENING!
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MORE ON THE CICO PROBLEM

DEFINITION (CICO PROBLEM OF SIZE )
Given a permutation P, find x of size (n — ¢) such that P(x || 0°) = (x || 0°).
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® Given a sponge construction of rate r and capacity ¢, solving the CICO problem
of size ¢ on its inner permutation gives a collision.
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MORE ON THE CICO PROBLEM

DEFINITION (CICO PROBLEM OF SIZE )
Given a permutation P, find x of size (n — ¢) such that P(x || 0°) = (x || 0°).

® Given a sponge construction of rate r and capacity ¢, solving the CICO problem
of size ¢ on its inner permutation gives a collision.

® There are variants (e.g. given y of size r, find x such that P(x || 0°) = (y || *).
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CoLLISION FROM THE CICO PROBLEM

® Suppose you know x such that P(x || 0°) = (v || 0°).

» Dl e oDy
o o o
.
y y
P
c > o> >
_— N _— _— _—
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® His an XOF (eXtendable Output Function), like SHAKE256.
® The t; are the tweak hashes.
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