
Design of a Linear Layer Optimised
for Bitsliced 32-bit Implementation

Gaëtan Leurent1, Clara Pernot1,2

1 Inria, Paris
2 Hensoldt France

Thursday, 28th March 2024

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 1 / 19

LS-designs [GLS+15]

LS-designs: a family of ciphers optimized for bitsliced implementation.
The state is considered as an s × ` matrix of bits:

`

s

S
L
⊕k i

Round function:
SBox layer: S applied ` times

Linear layer Λ: L applied s times
Key addition

Here: s = 4 and ` = 32.

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 2 / 19

LS-designs [GLS+15]

LS-designs: a family of ciphers optimized for bitsliced implementation.
The state is considered as an s × ` matrix of bits:

`

sS

L
⊕k i

Round function:
SBox layer: S applied ` times

Linear layer Λ: L applied s times
Key addition

Here: s = 4 and ` = 32.

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 2 / 19

LS-designs [GLS+15]

LS-designs: a family of ciphers optimized for bitsliced implementation.
The state is considered as an s × ` matrix of bits:

`

s

S

L

⊕k i

Round function:
SBox layer: S applied ` times
Linear layer Λ: L applied s times

Key addition
Here: s = 4 and ` = 32.

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 2 / 19

LS-designs [GLS+15]

LS-designs: a family of ciphers optimized for bitsliced implementation.
The state is considered as an s × ` matrix of bits:

`

s

S
L

⊕k i

Round function:
SBox layer: S applied ` times
Linear layer Λ: L applied s times
Key addition

Here: s = 4 and ` = 32.

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 2 / 19

LS-designs [GLS+15]

LS-designs: a family of ciphers optimized for bitsliced implementation.
The state is considered as an s × ` matrix of bits:

`

s

S
L
⊕k i

Round function:
SBox layer: S applied ` times
Linear layer Λ: L applied s times
Key addition

Here: s = 4 and ` = 32.

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 2 / 19

Wide-Trail Strategy
Wide-Trail Strategy [DR01]
It’s a design strategy proposed by Daemen and Rijmen:

select SBoxes with good cryptographic properties
design a linear layer that guarantees a large number of active SBoxes

To measure the diffusion of a linear layer Λ, we define the branch number:

B(Λ) = min
x 6=0

(
|x |+ |Λ(x)|

)

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 3 / 19

Wide-Trail Strategy
Wide-Trail Strategy [DR01]
It’s a design strategy proposed by Daemen and Rijmen:

select SBoxes with good cryptographic properties
design a linear layer that guarantees a large number of active SBoxes

To measure the diffusion of a linear layer Λ, we define the branch number:

B(Λ) = min
x 6=0

(
|x |+ |Λ(x)|

)

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 3 / 19

Wide-Trail Strategy
Wide-Trail Strategy [DR01]
It’s a design strategy proposed by Daemen and Rijmen:

select SBoxes with good cryptographic properties
design a linear layer that guarantees a large number of active SBoxes

To measure the diffusion of a linear layer Λ, we define the branch number:

B(Λ) = min
x 6=0

(
|x |+ |Λ(x)|

)
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

|x | = 7

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0

|Λ(x)| = 10

Λ

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 3 / 19

Wide-Trail Strategy
Wide-Trail Strategy [DR01]
It’s a design strategy proposed by Daemen and Rijmen:

select SBoxes with good cryptographic properties
design a linear layer that guarantees a large number of active SBoxes

To measure the diffusion of a linear layer Λ, we define the branch number:

B(Λ) = min
x 6=0

(
|x |+ |Λ(x)|

)
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

|x | = 7

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0

|Λ(x)| = 10

Λ

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 3 / 19

Wide-Trail Strategy
Wide-Trail Strategy [DR01]
It’s a design strategy proposed by Daemen and Rijmen:

select SBoxes with good cryptographic properties
design a linear layer that guarantees a large number of active SBoxes

To measure the diffusion of a linear layer Λ, we define the branch number:

B(Λ) = min
x 6=0

(
|x |+ |Λ(x)|

)
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

|x | = 7

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0

|Λ(x)| = 10

Λ

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 3 / 19

Wide-Trail Strategy
Wide-Trail Strategy [DR01]
It’s a design strategy proposed by Daemen and Rijmen:

select SBoxes with good cryptographic properties
design a linear layer that guarantees a large number of active SBoxes

To measure the diffusion of a linear layer Λ, we define the branch number:

B(Λ) = min
x 6=0

(
|x |+ |Λ(x)|

)

I Any non-trivial differential characteristics in two consecutive rounds
has at least B(Λ) active SBoxes.

I It allows to derive security bounds.

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 3 / 19

Linear layers
LS-designs:

Λ

L32

L32

L32

L32

B(Λ) = B(L32)

B(L32) = 12 with the best known code

Spook:
The linear transformation is defined on two words simultaneously:

Λ
L32×2

L32×2

B(Λ) = B(L32×2)

B(L32×2) = 16 in Spook

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 4 / 19

Linear layers
LS-designs:

Λ

L32

L32

L32

L32

B(Λ) = B(L32)

B(L32) = 12 with the best known code

Spook:
The linear transformation is defined on two words simultaneously:

Λ
L32×2

L32×2

B(Λ) = B(L32×2)

B(L32×2) = 16 in Spook

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 4 / 19

Linear layers
LS-designs:

Λ

L32

L32

L32

L32

B(Λ) = B(L32)

B(L32) = 12 with the best known code

Spook:
The linear transformation is defined on two words simultaneously:

Λ
L32×2

L32×2

B(Λ) = B(L32×2)

B(L32×2) = 16 in Spook

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 4 / 19

Linear layers
LS-designs:

Λ

L32

L32

L32

L32

B(Λ) = B(L32)

B(L32) = 12 with the best known code

Spook:
The linear transformation is defined on two words simultaneously:

Λ
L32×2

L32×2

B(Λ) = B(L32×2)

B(L32×2) = 16 in Spook

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 4 / 19

Efficient Implementation using Rotations and XORs

Algorithm L32 LBox
Input: x
a← x ⊕ rot(x , 1)
b ← a⊕ rot(a, 4)
a← b ⊕ rot(a, 9)
b ← a⊕ rot(x , 3)
Return b ⊕ rot(a, 6)

I B(L32) = 12
I Corresponds to circulant matrices

I All circulant matrices can be implemented using Rot and XOR
→ Goal: minimize the number of Rot and XOR

I The inverse can also be implemented using Rot and XOR
I B = Bdiff = Blin

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 5 / 19

Efficient Implementation using Rotations and XORs

Algorithm L32 LBox
Input: x
a← x ⊕ rot(x , 1)
b ← a⊕ rot(a, 4)
a← b ⊕ rot(a, 9)
b ← a⊕ rot(x , 3)
Return b ⊕ rot(a, 6)

I B(L32) = 12
I Corresponds to circulant matrices
I All circulant matrices can be implemented using Rot and XOR
→ Goal: minimize the number of Rot and XOR

I The inverse can also be implemented using Rot and XOR
I B = Bdiff = Blin

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 5 / 19

Efficient Implementation using Rotations and XORs

Algorithm L32 LBox
Input: x
a← x ⊕ rot(x , 1)
b ← a⊕ rot(a, 4)
a← b ⊕ rot(a, 9)
b ← a⊕ rot(x , 3)
Return b ⊕ rot(a, 6)

I B(L32) = 12
I Corresponds to circulant matrices
I All circulant matrices can be implemented using Rot and XOR
→ Goal: minimize the number of Rot and XOR

I The inverse can also be implemented using Rot and XOR

I B = Bdiff = Blin

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 5 / 19

Efficient Implementation using Rotations and XORs

Algorithm L32 LBox
Input: x
a← x ⊕ rot(x , 1)
b ← a⊕ rot(a, 4)
a← b ⊕ rot(a, 9)
b ← a⊕ rot(x , 3)
Return b ⊕ rot(a, 6)

I B(L32) = 12
I Corresponds to circulant matrices
I All circulant matrices can be implemented using Rot and XOR
→ Goal: minimize the number of Rot and XOR

I The inverse can also be implemented using Rot and XOR
I B = Bdiff = Blin

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 5 / 19

Linear layer in Spook [BBB+20]

Algorithm L2×32 LBox
Input: (x , y)
a← x ⊕ rot(x , 12)
b ← y ⊕ rot(y , 12)
a← a⊕ rot(a, 3)
b ← b ⊕ rot(b, 3)
a← a⊕ rot(x , 17)
b ← b ⊕ rot(y , 17)
c ← a⊕ rot(a, 31)
d ← b ⊕ rot(b, 31)
a← a⊕ rot(d , 26)
b ← b ⊕ rot(c , 25)
a← a⊕ rot(c , 15)
b ← b ⊕ rot(d , 15)
b ← rot(b, 1)

Return (b, a)

Algorithm L2×32 LBox inverse
Input: (x , y)
a← x ⊕ rot(x , 25)
b ← y ⊕ rot(y , 25)
c ← x ⊕ rot(a, 31)
d ← y ⊕ rot(b, 31)
c ← c ⊕ rot(a, 20)
d ← d ⊕ rot(b, 20)
a← c ⊕ rot(c , 31)
b ← d ⊕ rot(d , 31)
c ← c ⊕ rot(b, 26)
d ← d ⊕ rot(a, 25)
a← a⊕ rot(c , 17)
b ← b ⊕ rot(d , 17)
a← rot(a, 15)
b ← rot(b, 16)

Return (b, a)

1 step =
1 Rot/XOR
per word

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 6 / 19

Linear layer in Spook [BBB+20]

Algorithm L2×32 LBox
Input: (x , y)
a← x ⊕ rot(x , 12)
b ← y ⊕ rot(y , 12)
a← a⊕ rot(a, 3)
b ← b ⊕ rot(b, 3)
a← a⊕ rot(x , 17)
b ← b ⊕ rot(y , 17)
c ← a⊕ rot(a, 31)
d ← b ⊕ rot(b, 31)
a← a⊕ rot(d , 26)
b ← b ⊕ rot(c , 25)
a← a⊕ rot(c , 15)
b ← b ⊕ rot(d , 15)
b ← rot(b, 1)

Return (b, a)

Algorithm L2×32 LBox inverse
Input: (x , y)
a← x ⊕ rot(x , 25)
b ← y ⊕ rot(y , 25)
c ← x ⊕ rot(a, 31)
d ← y ⊕ rot(b, 31)
c ← c ⊕ rot(a, 20)
d ← d ⊕ rot(b, 20)
a← c ⊕ rot(c , 31)
b ← d ⊕ rot(d , 31)
c ← c ⊕ rot(b, 26)
d ← d ⊕ rot(a, 25)
a← a⊕ rot(c , 17)
b ← b ⊕ rot(d , 17)
a← rot(a, 15)
b ← rot(b, 16)

Return (b, a)

1 step =
1 Rot/XOR
per word

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 6 / 19

Efficient implementation of L and L−1 in Spook
Idea: find L1, L2 such that L1 = L−1

2
L1, L2: linear layers with efficient implementations

T
001...110

010...011
...

101...000

111...101

(ri , xi)i=0,...,6

(ri , xi)i=0,...,6

...

(ri , xi)i=0,...,6

(ri , xi)i=0,...,6

Generate L using XOR/rotations

Compute B(L)

If B(L) < 16 If B(L) ≥ 16

Is L−1 in T?

No Yes

Add L in T

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 7 / 19

Efficient implementation of L and L−1 in Spook
Idea: find L1, L2 such that L1 = L−1

2
L1, L2: linear layers with efficient implementations

T
001...110

010...011
...

101...000

111...101

(ri , xi)i=0,...,6

(ri , xi)i=0,...,6

...

(ri , xi)i=0,...,6

(ri , xi)i=0,...,6

Generate L using XOR/rotations

Compute B(L)

If B(L) < 16 If B(L) ≥ 16

Is L−1 in T?

No Yes

Add L in T

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 7 / 19

Efficient implementation of L and L−1 in Spook
Idea: find L1, L2 such that L1 = L−1

2
L1, L2: linear layers with efficient implementations

T
001...110

010...011
...

101...000

111...101

(ri , xi)i=0,...,6

(ri , xi)i=0,...,6

...

(ri , xi)i=0,...,6

(ri , xi)i=0,...,6

Generate L using XOR/rotations

Compute B(L)

If B(L) < 16 If B(L) ≥ 16

Is L−1 in T?

No Yes

Add L in T

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 7 / 19

Our work

Goal: obtain a linear layer operating on 3 or 4 32-bit words with:

a higher branch number

I Naive computation of a 128-bit linear transformation: 2128 operations.
I Is there a more efficient method?

an efficient implementation of L and L−1

I collisions are used in Spook: the search space is too big for 128 bits!
I Is there a more efficient method?

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 8 / 19

Our work

Goal: obtain a linear layer operating on 3 or 4 32-bit words with:

a higher branch number

I Naive computation of a 128-bit linear transformation: 2128 operations.
I Is there a more efficient method?

an efficient implementation of L and L−1

I collisions are used in Spook: the search space is too big for 128 bits!
I Is there a more efficient method?

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 8 / 19

Our work

Goal: obtain a linear layer operating on 3 or 4 32-bit words with:

a higher branch number
I Naive computation of a 128-bit linear transformation: 2128 operations.
I Is there a more efficient method?

an efficient implementation of L and L−1

I collisions are used in Spook: the search space is too big for 128 bits!
I Is there a more efficient method?

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 8 / 19

Our work

Goal: obtain a linear layer operating on 3 or 4 32-bit words with:

a higher branch number
I Naive computation of a 128-bit linear transformation: 2128 operations.
I Is there a more efficient method?

an efficient implementation of L and L−1

I collisions are used in Spook: the search space is too big for 128 bits!
I Is there a more efficient method?

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 8 / 19

Table of contents

1 Introduction

2 Efficient Computation of the Branch Number

3 Efficient Implementation of the Linear Layer and its Inverse

4 Conclusion

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 9 / 19

How to compute efficiently the branch number?

Reminder:
B(Λ) = min

x 6=0

(
|x |+ |Λ(x)|

)

Property
B(Λ) is equal to the minimal distance of the code with
codewords x‖Λ(x) for x ∈ ({0, 1}s)`.

We use an Information Set Decoding algorithm to compute B(Λ):
I Derived from Prange’s algorithm [Pra62]

I Find the non-zero codeword with the lowest possible weight.
I Probabilistic algorithm.

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 10 / 19

How to compute efficiently the branch number?

Reminder:
B(Λ) = min

x 6=0

(
|x |+ |Λ(x)|

)
Property
B(Λ) is equal to the minimal distance of the code with
codewords x‖Λ(x) for x ∈ ({0, 1}s)`.

We use an Information Set Decoding algorithm to compute B(Λ):
I Derived from Prange’s algorithm [Pra62]

I Find the non-zero codeword with the lowest possible weight.
I Probabilistic algorithm.

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 10 / 19

How to compute efficiently the branch number?

Reminder:
B(Λ) = min

x 6=0

(
|x |+ |Λ(x)|

)
Property
B(Λ) is equal to the minimal distance of the code with
codewords x‖Λ(x) for x ∈ ({0, 1}s)`.

We use an Information Set Decoding algorithm to compute B(Λ):
I Derived from Prange’s algorithm [Pra62]

I Find the non-zero codeword with the lowest possible weight.
I Probabilistic algorithm.

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 10 / 19

The Information Set Decoding algorithm

Small example on (F2)8 corresponding to L8:

We bet that there is a
weight 1 on these columns.

1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1
0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1
0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1

1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0
0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0
0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0
0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1
0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1
0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0
0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1
0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0
0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0

Input of L8 Output of L8

Information set

Repeat:
1 Select an information set
2 Put the columns of the

information set at the left
3 Do a Gauss reduction
4 Look at the weight of the lines

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 11 / 19

The Information Set Decoding algorithm

Small example on (F2)8 corresponding to L8:

We bet that there is a
weight 1 on these columns.

1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1
0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1
0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1

1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0
0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0
0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0
0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1
0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1
0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0
0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1
0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0
0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0

Input of L8 Output of L8

Information set

Repeat:
1 Select an information set

2 Put the columns of the
information set at the left

3 Do a Gauss reduction
4 Look at the weight of the lines

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 11 / 19

The Information Set Decoding algorithm

Small example on (F2)8 corresponding to L8:

We bet that there is a
weight 1 on these columns.

1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1
0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1
0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1

1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0
0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0
0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0
0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1
0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1
0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0
0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1
0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0
0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0

Input of L8 Output of L8

Information set

Repeat:
1 Select an information set
2 Put the columns of the

information set at the left

3 Do a Gauss reduction
4 Look at the weight of the lines

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 11 / 19

The Information Set Decoding algorithm

Small example on (F2)8 corresponding to L8:

We bet that there is a
weight 1 on these columns.

1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1
0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1
0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1

1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0
0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0
0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0
0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1
0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1
0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0
0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1
0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0
0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0

Input of L8 Output of L8

Information set

Repeat:
1 Select an information set
2 Put the columns of the

information set at the left
3 Do a Gauss reduction

4 Look at the weight of the lines

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 11 / 19

The Information Set Decoding algorithm

Small example on (F2)8 corresponding to L8:

We bet that there is a
weight 1 on these columns.

1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1
0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1
0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1

1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0
0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0
0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0
0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1
0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1
0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0
0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1
0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0
0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0

Input of L8 Output of L8

Information set

Repeat:
1 Select an information set
2 Put the columns of the

information set at the left
3 Do a Gauss reduction
4 Look at the weight of the lines

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 11 / 19

The Information Set Decoding algorithm

We assume that there is a word W of weight w
We find W if it has weight 1 in the information set

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

Weight w/2 = 3

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

Weight 1

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

This happens with probability:

p =

(
`

w−1

)
×

(
`
1

)(2`
w
)

⇒ We can also detect a weight of 2 by considering all the pairs of 2 lines:
p : ↗
Time complexity : ≈
(because the time complexity is dominated by the Gaussian Reduction)

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 12 / 19

The Information Set Decoding algorithm

We assume that there is a word W of weight w
We find W if it has weight 1 in the information set

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

Weight w/2 = 3

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

Weight 1

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

This happens with probability:

p =

(
`

w−1

)
×

(
`
1

)(2`
w
)

⇒ We can also detect a weight of 2 by considering all the pairs of 2 lines:
p : ↗
Time complexity : ≈
(because the time complexity is dominated by the Gaussian Reduction)

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 12 / 19

The Information Set Decoding algorithm

We assume that there is a word W of weight w
We find W if it has weight 1 in the information set

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

Weight w/2 = 3

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

Weight 1

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

This happens with probability:

p =

(
`

w−1

)
×

(
`
1

)(2`
w
)

⇒ We can also detect a weight of 2 by considering all the pairs of 2 lines:
p : ↗
Time complexity : ≈
(because the time complexity is dominated by the Gaussian Reduction)

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 12 / 19

The Information Set Decoding algorithm

We assume that there is a word W of weight w
We find W if it has weight 1 in the information set

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

Weight w/2 = 3

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

Weight 1

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

This happens with probability:

p =

(
`

w−1

)
×
(
`
1

)(2`
w
)

⇒ We can also detect a weight of 2 by considering all the pairs of 2 lines:
p : ↗
Time complexity : ≈
(because the time complexity is dominated by the Gaussian Reduction)

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 12 / 19

The Information Set Decoding algorithm

We assume that there is a word W of weight w
We find W if it has weight 1 in the information set

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

Weight w/2 = 3

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

Weight 1

W = 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

This happens with probability:

p =

(
`

w−1

)
×
(
`
1

)(2`
w
)

⇒ We can also detect a weight of 2 by considering all the pairs of 2 lines:
p : ↗
Time complexity : ≈
(because the time complexity is dominated by the Gaussian Reduction)

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 12 / 19

The Information Set Decoding algorithm

We need to adapt this algorithm to our context:

w = 20 ` = 32 4 words

With 225 iterations that costs 216.8 the probability of failing to find W if it
exists is 2−604:

Method Time Complexity Success Probability

Naive 2128 1
ISD 241.8 1 - 2−604

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 13 / 19

Table of contents

1 Introduction

2 Efficient Computation of the Branch Number

3 Efficient Implementation of the Linear Layer and its Inverse

4 Conclusion

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 14 / 19

Efficient implementation of L and L−1

The method used in Spook uses collisions

Here, the search space is too big...
I Sometimes, we only require an efficient implementation of L

Example: CounTeR Mode

I Otherwise, we use a heuristic algorithm to find an efficient
implementation of the inverse

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 15 / 19

Efficient implementation of L and L−1

Random circulant matrix:
For 4 32-bit words, after 218 tests: the best B is 21

Efficient matrix:
Our strategy:

1 generate candidates based on 6 steps of XOR and rotations
2 keep only candidates with B = 21
3 look for an efficient implementation of the inverse
4 keep the candidate whose inverse has the most efficient

implementation

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 16 / 19

Efficient implementation of L and L−1

Random circulant matrix:
For 4 32-bit words, after 218 tests: the best B is 21

Efficient matrix:
Our strategy:

1 generate candidates based on 6 steps of XOR and rotations
2 keep only candidates with B = 21
3 look for an efficient implementation of the inverse
4 keep the candidate whose inverse has the most efficient

implementation

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 16 / 19

Table of contents

1 Introduction

2 Efficient Computation of the Branch Number

3 Efficient Implementation of the Linear Layer and its Inverse

4 Conclusion

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 17 / 19

Results

L w Branch number c(L) c(L−1) Ref

L32 1 12 5 5 LS-designs [Leu19]
L32×2 2 16 6 6 Spook [BBB+20]
L32×3 3 19 6 13 New
L32×4 4 21 6 18 New

Linear transformations based on XORs and rotations

c(L): number of XORs per 32-bit word in our implementation

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 18 / 19

Conclusion

→ Extension of the work done in the LS-designs and Spook

→ Linear layer with branch number 21 over 128 bits with the same cost
as Spook (whose branch number is 16)

→ Illustration of the interactions between different fields of cryptography:
use algorithm from coding theory

Thank you!

Gaëtan Leurent, Clara Pernot Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation 19 / 19

	Introduction
	Efficient Computation of the Branch Number
	Efficient Implementation of the Linear Layer and its Inverse
	Conclusion

