
Column Parity Mixers
Ko Stoffelen and Joan Daemen

Diffusion

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

2/17

Diffusion in Keccak-f

Only 2 XORs/bit + good bounds on differential trails [MDA17]

3/17

Column parity mixers

For an m × n matrix A over F`2:
θ(A) = A +

1m

f (A)

Z


1

1

1

 (
1 1 1

)


a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3



︸ ︷︷ ︸
1×n column parity


z0,0 z0,1 z0,2 z0,3
z1,0 z1,1 z1,2 z1,3
z2,0 z2,1 z2,2 z2,3
z3,0 z3,1 z3,2 z3,3


︸ ︷︷ ︸

n×n parity-folding matrix︸ ︷︷ ︸
1×n θ-effect︸ ︷︷ ︸

m×n expanded θ-effect

θ fully defined by m, n and Z

4/17

Column parity mixers

For an m × n matrix A over F`2:
θ(A) = A +

1m

1TmA

Z


1

1

1



(
1 1 1

) 
a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3


︸ ︷︷ ︸

1×n column parity


z0,0 z0,1 z0,2 z0,3
z1,0 z1,1 z1,2 z1,3
z2,0 z2,1 z2,2 z2,3
z3,0 z3,1 z3,2 z3,3


︸ ︷︷ ︸

n×n parity-folding matrix︸ ︷︷ ︸
1×n θ-effect︸ ︷︷ ︸

m×n expanded θ-effect

θ fully defined by m, n and Z

4/17

Column parity mixers

For an m × n matrix A over F`2:
θ(A) = A +

1m

1TmAZ


1

1

1



(
1 1 1

) 
a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3


︸ ︷︷ ︸

1×n column parity


z0,0 z0,1 z0,2 z0,3
z1,0 z1,1 z1,2 z1,3
z2,0 z2,1 z2,2 z2,3
z3,0 z3,1 z3,2 z3,3


︸ ︷︷ ︸

n×n parity-folding matrix︸ ︷︷ ︸
1×n θ-effect

︸ ︷︷ ︸
m×n expanded θ-effect

θ fully defined by m, n and Z

4/17

Column parity mixers

For an m × n matrix A over F`2:
θ(A) = A + 1m1TmAZ


1

1

1

 (
1 1 1

) 
a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3


︸ ︷︷ ︸

1×n column parity


z0,0 z0,1 z0,2 z0,3
z1,0 z1,1 z1,2 z1,3
z2,0 z2,1 z2,2 z2,3
z3,0 z3,1 z3,2 z3,3


︸ ︷︷ ︸

n×n parity-folding matrix︸ ︷︷ ︸
1×n θ-effect︸ ︷︷ ︸

m×n expanded θ-effect

θ fully defined by m, n and Z

4/17

Column parity mixers

For an m × n matrix A over F`2:
θ(A) = A +

1m

1mmAZ


1

1

1

 (
1 1 1

) 
a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3


︸ ︷︷ ︸

1×n column parity


z0,0 z0,1 z0,2 z0,3
z1,0 z1,1 z1,2 z1,3
z2,0 z2,1 z2,2 z2,3
z3,0 z3,1 z3,2 z3,3


︸ ︷︷ ︸

n×n parity-folding matrix︸ ︷︷ ︸
1×n θ-effect︸ ︷︷ ︸

m×n expanded θ-effect

θ fully defined by m, n and Z

4/17

Column parity mixers

For an m × n matrix A over F`2:
θ(A) = A +

1m

1mmAZ


1

1

1

 (
1 1 1

) 
a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3


︸ ︷︷ ︸

1×n column parity


z0,0 z0,1 z0,2 z0,3
z1,0 z1,1 z1,2 z1,3
z2,0 z2,1 z2,2 z2,3
z3,0 z3,1 z3,2 z3,3


︸ ︷︷ ︸

n×n parity-folding matrix︸ ︷︷ ︸
1×n θ-effect︸ ︷︷ ︸

m×n expanded θ-effect

θ fully defined by m, n and Z

4/17

Special case: circulant Z


z0 z1 z2 z3
z1 z2 z3 z0
z2 z3 z0 z1
z3 z0 z1 z2



z(x) = z0 + z1x + z2x2 + z3x3

θ-effect: z(x)p(x) mod 1 + xn

θ(a(x , y)) = a(x , y) + 1 + ym

1 + y z(x)a(x , y) mod (1 + xn)(1 + ym)

5/17

Special case: circulant Z


z0 z1 z2 z3
z1 z2 z3 z0
z2 z3 z0 z1
z3 z0 z1 z2


z(x) = z0 + z1x + z2x2 + z3x3

θ-effect: z(x)p(x) mod 1 + xn

θ(a(x , y)) = a(x , y) + 1 + ym

1 + y z(x)a(x , y) mod (1 + xn)(1 + ym)

5/17

Special case: circulant Z


z0 z1 z2 z3
z1 z2 z3 z0
z2 z3 z0 z1
z3 z0 z1 z2


z(x) = z0 + z1x + z2x2 + z3x3

θ-effect: z(x)p(x) mod 1 + xn

θ(a(x , y)) = a(x , y) + 1 + ym

1 + y z(x)a(x , y) mod (1 + xn)(1 + ym)

5/17

Special case: circulant Z


z0 z1 z2 z3
z1 z2 z3 z0
z2 z3 z0 z1
z3 z0 z1 z2


z(x) = z0 + z1x + z2x2 + z3x3

θ-effect: z(x)p(x) mod 1 + xn

θ(a(x , y)) = a(x , y) + 1 + ym

1 + y z(x)a(x , y) mod (1 + xn)(1 + ym)

5/17

Algebraic properties

θ′(θ(A)) = θ′(A + 1mmAZ)
= A + 1mmAZ + 1mmAZ ′ + (1mm)2AZZ ′

• If m even, (1mm)2 = 0mm:
– θ′(θ(A)) = A + 1mmA(Z + Z ′)
– Group isomorphic to

(
Zn2
2 ,+

)
– CPM is invertible, involution, commutative

• If m odd, (1mm)2 = 1mm:
– θ′(θ(A)) = A + 1mmA ((Z + I)(Z ′ + I) + I)
– Group isomorphic to GL(n, 2)
– CPM is invertible iff Z + I is, non-commutative

6/17

Algebraic properties

θ′(θ(A)) = θ′(A + 1mmAZ)
= A + 1mmAZ + 1mmAZ ′ + (1mm)2AZZ ′

• If m even, (1mm)2 = 0mm:
– θ′(θ(A)) = A + 1mmA(Z + Z ′)
– Group isomorphic to

(
Zn2
2 ,+

)
– CPM is invertible, involution, commutative

• If m odd, (1mm)2 = 1mm:
– θ′(θ(A)) = A + 1mmA ((Z + I)(Z ′ + I) + I)
– Group isomorphic to GL(n, 2)
– CPM is invertible iff Z + I is, non-commutative

6/17

Algebraic properties

θ′(θ(A)) = θ′(A + 1mmAZ)
= A + 1mmAZ + 1mmAZ ′ + (1mm)2AZZ ′

• If m even, (1mm)2 = 0mm:
– θ′(θ(A)) = A + 1mmA(Z + Z ′)
– Group isomorphic to

(
Zn2
2 ,+

)
– CPM is invertible, involution, commutative

• If m odd, (1mm)2 = 1mm:
– θ′(θ(A)) = A + 1mmA ((Z + I)(Z ′ + I) + I)
– Group isomorphic to GL(n, 2)
– CPM is invertible iff Z + I is, non-commutative

6/17

Propagation properties

• Differences

A∆ = A + A′ at the input
⇒ B∆ = θ(A) + θ(A′) = θ(A∆) at the output

• Linear masks

V at the output
⇒ U = V + 1mmVZT at the input

7/17

Propagation properties

• Differences

A∆ = A + A′ at the input
⇒ B∆ = θ(A) + θ(A′) = θ(A∆) at the output

• Linear masks

V at the output
⇒ U = V + 1mmVZT at the input

7/17

Diffusion with CPMs

• How about a state like this?

• Orbital: pair of active bits in the same column
• θ is identity for states in the kernel
• States in the kernel can be expressed as a set of orbitals
• Branch number 4
• Requires transposition layer
• Single-bit difference propagates to 1 + |Z |m bits

8/17

Diffusion with CPMs

• How about a state like this?

• Orbital: pair of active bits in the same column

• θ is identity for states in the kernel
• States in the kernel can be expressed as a set of orbitals
• Branch number 4
• Requires transposition layer
• Single-bit difference propagates to 1 + |Z |m bits

8/17

Diffusion with CPMs

• How about a state like this?

• Orbital: pair of active bits in the same column
• θ is identity for states in the kernel

• States in the kernel can be expressed as a set of orbitals
• Branch number 4
• Requires transposition layer
• Single-bit difference propagates to 1 + |Z |m bits

8/17

Diffusion with CPMs

• How about a state like this?

• Orbital: pair of active bits in the same column
• θ is identity for states in the kernel
• States in the kernel can be expressed as a set of orbitals

• Branch number 4
• Requires transposition layer
• Single-bit difference propagates to 1 + |Z |m bits

8/17

Diffusion with CPMs

• How about a state like this?

• Orbital: pair of active bits in the same column
• θ is identity for states in the kernel
• States in the kernel can be expressed as a set of orbitals
• Branch number 4

• Requires transposition layer
• Single-bit difference propagates to 1 + |Z |m bits

8/17

Diffusion with CPMs

• How about a state like this?

• Orbital: pair of active bits in the same column
• θ is identity for states in the kernel
• States in the kernel can be expressed as a set of orbitals
• Branch number 4
• Requires transposition layer

• Single-bit difference propagates to 1 + |Z |m bits

8/17

Diffusion with CPMs

• How about a state like this?

• Orbital: pair of active bits in the same column
• θ is identity for states in the kernel
• States in the kernel can be expressed as a set of orbitals
• Branch number 4
• Requires transposition layer
• Single-bit difference propagates to 1 + |Z |m bits

8/17

CPMs vs. (near-)MDS matrices

Cipher Type XORs/bit Branch no.
AES MDS 3.03 5
Joltik MDS 3 5
PHOTON MDS 5† 7
Prøst MDS 4.5† 5
Midori Not MDS‡ 1.5 4
Minalpher Not MDS‡ 1.5 4
Prince Not MDS 1.5 4
SKINNY Not MDS 0.75 2
Keccak-f CPM 2 4
Circulant CPM CPM 2 + |z(x)|−2

m
* 4

* XORs/bit ∈ [2− 1/m, 2 + (n − 2)/m]
† Unknown whether it can be computed with less XORs
‡ Can also be considered to be a CPM!

9/17

CPM example


1 1 0 1

1 1 1 0

0 1 1 1

1 0 1 1



⇔

m = 2,Z =

0 1

1 0



10/17

CPM example


1 1 0 1

1 1 1 0

0 1 1 1

1 0 1 1


⇔

m = 2,Z =

0 1

1 0



10/17

Building a permutation with a CPM

1. Determine design goals

2. Pick m, n, and cell width
3. Pick ‘good’ ‘efficient’ non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine ‘good’ transposition
6. Consider (truncated) trails outside the kernel
7. Determine ‘good’ Z
8. Pick ‘good’ round constants to beat all kinds of invariant

attacks [BCLR17]
9. Do more analysis

10. Determine the number of rounds
11. Implement it
12. Give it a name

11/17

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width

3. Pick ‘good’ ‘efficient’ non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine ‘good’ transposition
6. Consider (truncated) trails outside the kernel
7. Determine ‘good’ Z
8. Pick ‘good’ round constants to beat all kinds of invariant

attacks [BCLR17]
9. Do more analysis

10. Determine the number of rounds
11. Implement it
12. Give it a name

11/17

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick ‘good’ ‘efficient’ non-linear S-box

4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine ‘good’ transposition
6. Consider (truncated) trails outside the kernel
7. Determine ‘good’ Z
8. Pick ‘good’ round constants to beat all kinds of invariant

attacks [BCLR17]
9. Do more analysis

10. Determine the number of rounds
11. Implement it
12. Give it a name

11/17

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick ‘good’ ‘efficient’ non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)

5. Determine ‘good’ transposition
6. Consider (truncated) trails outside the kernel
7. Determine ‘good’ Z
8. Pick ‘good’ round constants to beat all kinds of invariant

attacks [BCLR17]
9. Do more analysis

10. Determine the number of rounds
11. Implement it
12. Give it a name

11/17

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick ‘good’ ‘efficient’ non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine ‘good’ transposition

6. Consider (truncated) trails outside the kernel
7. Determine ‘good’ Z
8. Pick ‘good’ round constants to beat all kinds of invariant

attacks [BCLR17]
9. Do more analysis

10. Determine the number of rounds
11. Implement it
12. Give it a name

11/17

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick ‘good’ ‘efficient’ non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine ‘good’ transposition
6. Consider (truncated) trails outside the kernel

7. Determine ‘good’ Z
8. Pick ‘good’ round constants to beat all kinds of invariant

attacks [BCLR17]
9. Do more analysis

10. Determine the number of rounds
11. Implement it
12. Give it a name

11/17

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick ‘good’ ‘efficient’ non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine ‘good’ transposition
6. Consider (truncated) trails outside the kernel
7. Determine ‘good’ Z

8. Pick ‘good’ round constants to beat all kinds of invariant
attacks [BCLR17]

9. Do more analysis
10. Determine the number of rounds
11. Implement it
12. Give it a name

11/17

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick ‘good’ ‘efficient’ non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine ‘good’ transposition
6. Consider (truncated) trails outside the kernel
7. Determine ‘good’ Z
8. Pick ‘good’ round constants to beat all kinds of invariant

attacks [BCLR17]

9. Do more analysis
10. Determine the number of rounds
11. Implement it
12. Give it a name

11/17

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick ‘good’ ‘efficient’ non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine ‘good’ transposition
6. Consider (truncated) trails outside the kernel
7. Determine ‘good’ Z
8. Pick ‘good’ round constants to beat all kinds of invariant

attacks [BCLR17]
9. Do more analysis

10. Determine the number of rounds
11. Implement it
12. Give it a name

11/17

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick ‘good’ ‘efficient’ non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine ‘good’ transposition
6. Consider (truncated) trails outside the kernel
7. Determine ‘good’ Z
8. Pick ‘good’ round constants to beat all kinds of invariant

attacks [BCLR17]
9. Do more analysis

10. Determine the number of rounds

11. Implement it
12. Give it a name

11/17

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick ‘good’ ‘efficient’ non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine ‘good’ transposition
6. Consider (truncated) trails outside the kernel
7. Determine ‘good’ Z
8. Pick ‘good’ round constants to beat all kinds of invariant

attacks [BCLR17]
9. Do more analysis

10. Determine the number of rounds
11. Implement it

12. Give it a name

11/17

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick ‘good’ ‘efficient’ non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine ‘good’ transposition
6. Consider (truncated) trails outside the kernel
7. Determine ‘good’ Z
8. Pick ‘good’ round constants to beat all kinds of invariant

attacks [BCLR17]
9. Do more analysis

10. Determine the number of rounds
11. Implement it
12. Give it a name

11/17

(Truncated) trail search

• r -round trail with weight W has differential with weight L ≤
⌊W

r
⌋

• Observation in [MDA17]: less 2-round trail cores with weight ≤ 2L
than differentials ≤ L

• Generate 2-round trail cores, extend r − 2
• Model generation as tree traversal, following [MDA17]
• Use rotational symmetry and monotonically increasing weight for

pruning
• CPM causes heavy search space branching
• Dedicated software for CPM-based ciphers/permutations

12/17

(Truncated) trail search

• r -round trail with weight W has differential with weight L ≤
⌊W

r
⌋

• Observation in [MDA17]: less 2-round trail cores with weight ≤ 2L
than differentials ≤ L

• Generate 2-round trail cores, extend r − 2
• Model generation as tree traversal, following [MDA17]
• Use rotational symmetry and monotonically increasing weight for

pruning
• CPM causes heavy search space branching
• Dedicated software for CPM-based ciphers/permutations

12/17

(Truncated) trail search

• r -round trail with weight W has differential with weight L ≤
⌊W

r
⌋

• Observation in [MDA17]: less 2-round trail cores with weight ≤ 2L
than differentials ≤ L

• Generate 2-round trail cores, extend r − 2

• Model generation as tree traversal, following [MDA17]
• Use rotational symmetry and monotonically increasing weight for

pruning
• CPM causes heavy search space branching
• Dedicated software for CPM-based ciphers/permutations

12/17

(Truncated) trail search

• r -round trail with weight W has differential with weight L ≤
⌊W

r
⌋

• Observation in [MDA17]: less 2-round trail cores with weight ≤ 2L
than differentials ≤ L

• Generate 2-round trail cores, extend r − 2
• Model generation as tree traversal, following [MDA17]

• Use rotational symmetry and monotonically increasing weight for
pruning

• CPM causes heavy search space branching
• Dedicated software for CPM-based ciphers/permutations

12/17

(Truncated) trail search

• r -round trail with weight W has differential with weight L ≤
⌊W

r
⌋

• Observation in [MDA17]: less 2-round trail cores with weight ≤ 2L
than differentials ≤ L

• Generate 2-round trail cores, extend r − 2
• Model generation as tree traversal, following [MDA17]
• Use rotational symmetry and monotonically increasing weight for

pruning

• CPM causes heavy search space branching
• Dedicated software for CPM-based ciphers/permutations

12/17

(Truncated) trail search

• r -round trail with weight W has differential with weight L ≤
⌊W

r
⌋

• Observation in [MDA17]: less 2-round trail cores with weight ≤ 2L
than differentials ≤ L

• Generate 2-round trail cores, extend r − 2
• Model generation as tree traversal, following [MDA17]
• Use rotational symmetry and monotonically increasing weight for

pruning
• CPM causes heavy search space branching

• Dedicated software for CPM-based ciphers/permutations

12/17

(Truncated) trail search

• r -round trail with weight W has differential with weight L ≤
⌊W

r
⌋

• Observation in [MDA17]: less 2-round trail cores with weight ≤ 2L
than differentials ≤ L

• Generate 2-round trail cores, extend r − 2
• Model generation as tree traversal, following [MDA17]
• Use rotational symmetry and monotonically increasing weight for

pruning
• CPM causes heavy search space branching
• Dedicated software for CPM-based ciphers/permutations

12/17

Mixifer

• 16 rounds (ι ◦ ρ ◦ π ◦ θ ◦ γ), 4× 16× 4 = 256 bits permutation

• γ: rotational symmetric, b0 = a1 + a2 + a0a2 + a1a2 + a1a2a3
• θ: Z is circulant, first row [0, 1, 1, 0, 0, 1, 0, 0, 0, . . . , 0]
• π: rotate rows down
• ρ: rotate rows cell-wise to the right by {14, 3, 10, 0}
• ι: add 0xF3485763� i in round i to every other cell of top row

13/17

Mixifer

• 16 rounds (ι ◦ ρ ◦ π ◦ θ ◦ γ), 4× 16× 4 = 256 bits permutation
• γ: rotational symmetric, b0 = a1 + a2 + a0a2 + a1a2 + a1a2a3

• θ: Z is circulant, first row [0, 1, 1, 0, 0, 1, 0, 0, 0, . . . , 0]
• π: rotate rows down
• ρ: rotate rows cell-wise to the right by {14, 3, 10, 0}
• ι: add 0xF3485763� i in round i to every other cell of top row

13/17

Mixifer

• 16 rounds (ι ◦ ρ ◦ π ◦ θ ◦ γ), 4× 16× 4 = 256 bits permutation
• γ: rotational symmetric, b0 = a1 + a2 + a0a2 + a1a2 + a1a2a3
• θ: Z is circulant, first row [0, 1, 1, 0, 0, 1, 0, 0, 0, . . . , 0]

• π: rotate rows down
• ρ: rotate rows cell-wise to the right by {14, 3, 10, 0}
• ι: add 0xF3485763� i in round i to every other cell of top row

A

⊕

1T4 A 1T4 AZ

θ(A)

⊕

13/17

Mixifer

• 16 rounds (ι ◦ ρ ◦ π ◦ θ ◦ γ), 4× 16× 4 = 256 bits permutation
• γ: rotational symmetric, b0 = a1 + a2 + a0a2 + a1a2 + a1a2a3
• θ: Z is circulant, first row [0, 1, 1, 0, 0, 1, 0, 0, 0, . . . , 0]
• π: rotate rows down

• ρ: rotate rows cell-wise to the right by {14, 3, 10, 0}
• ι: add 0xF3485763� i in round i to every other cell of top row

π ρ

13/17

Mixifer

• 16 rounds (ι ◦ ρ ◦ π ◦ θ ◦ γ), 4× 16× 4 = 256 bits permutation
• γ: rotational symmetric, b0 = a1 + a2 + a0a2 + a1a2 + a1a2a3
• θ: Z is circulant, first row [0, 1, 1, 0, 0, 1, 0, 0, 0, . . . , 0]
• π: rotate rows down
• ρ: rotate rows cell-wise to the right by {14, 3, 10, 0}

• ι: add 0xF3485763� i in round i to every other cell of top row

π ρ

13/17

Mixifer

• 16 rounds (ι ◦ ρ ◦ π ◦ θ ◦ γ), 4× 16× 4 = 256 bits permutation
• γ: rotational symmetric, b0 = a1 + a2 + a0a2 + a1a2 + a1a2a3
• θ: Z is circulant, first row [0, 1, 1, 0, 0, 1, 0, 0, 0, . . . , 0]
• π: rotate rows down
• ρ: rotate rows cell-wise to the right by {14, 3, 10, 0}
• ι: add 0xF3485763� i in round i to every other cell of top row

13/17

Mixifer analysis

• Strict avalanche criterion after 3 rounds, full diffusion after 5

• After 4 rounds:

– In kernel: ≥ 52 active cells
– Outside kernel: ≥ 46 active cells (differential), DP 2−92
– Outside kernel: ≥ 40 active cells (linear), LP 2−80

• Preliminary study makes us believe trail clustering, impossible
differentials, invariant attacks are not a concern

14/17

Mixifer analysis

• Strict avalanche criterion after 3 rounds, full diffusion after 5
• After 4 rounds:

– In kernel: ≥ 52 active cells
– Outside kernel: ≥ 46 active cells (differential), DP 2−92
– Outside kernel: ≥ 40 active cells (linear), LP 2−80

• Preliminary study makes us believe trail clustering, impossible
differentials, invariant attacks are not a concern

14/17

Mixifer analysis

• Strict avalanche criterion after 3 rounds, full diffusion after 5
• After 4 rounds:

– In kernel: ≥ 52 active cells

– Outside kernel: ≥ 46 active cells (differential), DP 2−92
– Outside kernel: ≥ 40 active cells (linear), LP 2−80

• Preliminary study makes us believe trail clustering, impossible
differentials, invariant attacks are not a concern

14/17

Mixifer analysis

• Strict avalanche criterion after 3 rounds, full diffusion after 5
• After 4 rounds:

– In kernel: ≥ 52 active cells
– Outside kernel: ≥ 46 active cells (differential), DP 2−92

– Outside kernel: ≥ 40 active cells (linear), LP 2−80
• Preliminary study makes us believe trail clustering, impossible

differentials, invariant attacks are not a concern

14/17

Mixifer analysis

• Strict avalanche criterion after 3 rounds, full diffusion after 5
• After 4 rounds:

– In kernel: ≥ 52 active cells
– Outside kernel: ≥ 46 active cells (differential), DP 2−92
– Outside kernel: ≥ 40 active cells (linear), LP 2−80

• Preliminary study makes us believe trail clustering, impossible
differentials, invariant attacks are not a concern

14/17

Mixifer analysis

• Strict avalanche criterion after 3 rounds, full diffusion after 5
• After 4 rounds:

– In kernel: ≥ 52 active cells
– Outside kernel: ≥ 46 active cells (differential), DP 2−92
– Outside kernel: ≥ 40 active cells (linear), LP 2−80

• Preliminary study makes us believe trail clustering, impossible
differentials, invariant attacks are not a concern

14/17

Mixifer implementation

16 columns
1 cell

4
ro
ws

r0
r1

r2
r3

r4
r5

r6
r7

15/17

Mixifer comparison (ARM Cortex-M4)

Cipher Width r Speed (cpb) Bound trails

(bits) Full /r r W /r

AES bitsliced 128 10 50.52 5.05 4 150 37.5

AES tables 39.97 4.00

Gimli 384 24 21.81 0.91 8 52 6.5

Keccak-f [400] 400 20 106 5.3 6 92 15.3

Keccak-f [800] 800 22 48.02 2.18 6 92 15.3

Salsa20/20 512 20 13.88 0.69 3 18 6

Mixifer 256 16 36.69 2.33 4 92 23

16/17

Thanks. . .

. . . for your attention

Questions?

17/17

References I

Christof Beierle, Anne Canteaut, Gregor Leander, and Yann Rotella.
Proving resistance against invariant attacks: How to choose the round constants.
In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017,
Part II, volume 10402 of Lecture Notes in Computer Science, pages 647–678, Santa Barbara,
CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

Silvia Mella, Joan Daemen, and Gilles Van Assche.
New techniques for trail bounds and application to differential trails in Keccak.
IACR Transactions on Symmetric Cryptology, 2017(1):329–357, 2017.

18/17

