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Diffusion in Keccak-f

Only 2 XORs/bit + good bounds on differential trails [MDA17]
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Column parity mixers

For an m × n matrix A over F`2:
θ(A) = A +

1m

f (A)

Z


1

1

1

 (
1 1 1

)


a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3



︸ ︷︷ ︸
1×n column parity


z0,0 z0,1 z0,2 z0,3
z1,0 z1,1 z1,2 z1,3
z2,0 z2,1 z2,2 z2,3
z3,0 z3,1 z3,2 z3,3


︸ ︷︷ ︸

n×n parity-folding matrix︸ ︷︷ ︸
1×n θ-effect︸ ︷︷ ︸

m×n expanded θ-effect

θ fully defined by m, n and Z
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Special case: circulant Z


z0 z1 z2 z3
z1 z2 z3 z0
z2 z3 z0 z1
z3 z0 z1 z2



z(x) = z0 + z1x + z2x2 + z3x3

θ-effect: z(x)p(x) mod 1 + xn

θ(a(x , y)) = a(x , y) + 1 + ym

1 + y z(x)a(x , y) mod (1 + xn)(1 + ym)
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Algebraic properties

θ′(θ(A)) = θ′(A + 1mmAZ )
= A + 1mmAZ + 1mmAZ ′ + (1mm)2AZZ ′

• If m even, (1mm)2 = 0mm:
– θ′(θ(A)) = A + 1mmA(Z + Z ′)
– Group isomorphic to

(
Zn2
2 ,+

)
– CPM is invertible, involution, commutative

• If m odd, (1mm)2 = 1mm:
– θ′(θ(A)) = A + 1mmA ((Z + I)(Z ′ + I) + I)
– Group isomorphic to GL(n, 2)
– CPM is invertible iff Z + I is, non-commutative
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Propagation properties

• Differences

A∆ = A + A′ at the input
⇒ B∆ = θ(A) + θ(A′) = θ(A∆) at the output

• Linear masks

V at the output
⇒ U = V + 1mmVZT at the input
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Diffusion with CPMs

• How about a state like this?

• Orbital: pair of active bits in the same column
• θ is identity for states in the kernel
• States in the kernel can be expressed as a set of orbitals
• Branch number 4
• Requires transposition layer
• Single-bit difference propagates to 1 + |Z |m bits
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CPMs vs. (near-)MDS matrices

Cipher Type XORs/bit Branch no.
AES MDS 3.03 5
Joltik MDS 3 5
PHOTON MDS 5† 7
Prøst MDS 4.5† 5
Midori Not MDS‡ 1.5 4
Minalpher Not MDS‡ 1.5 4
Prince Not MDS 1.5 4
SKINNY Not MDS 0.75 2
Keccak-f CPM 2 4
Circulant CPM CPM 2 + |z(x)|−2

m
* 4

* XORs/bit ∈ [2− 1/m, 2 + (n − 2)/m]
† Unknown whether it can be computed with less XORs
‡ Can also be considered to be a CPM!
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CPM example


1 1 0 1

1 1 1 0

0 1 1 1

1 0 1 1



⇔

m = 2,Z =

0 1

1 0


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Building a permutation with a CPM

1. Determine design goals

2. Pick m, n, and cell width
3. Pick ‘good’ ‘efficient’ non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z )
5. Determine ‘good’ transposition
6. Consider (truncated) trails outside the kernel
7. Determine ‘good’ Z
8. Pick ‘good’ round constants to beat all kinds of invariant

attacks [BCLR17]
9. Do more analysis

10. Determine the number of rounds
11. Implement it
12. Give it a name
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(Truncated) trail search

• r -round trail with weight W has differential with weight L ≤
⌊W

r
⌋

• Observation in [MDA17]: less 2-round trail cores with weight ≤ 2L
than differentials ≤ L

• Generate 2-round trail cores, extend r − 2
• Model generation as tree traversal, following [MDA17]
• Use rotational symmetry and monotonically increasing weight for

pruning
• CPM causes heavy search space branching
• Dedicated software for CPM-based ciphers/permutations
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Mixifer

• 16 rounds (ι ◦ ρ ◦ π ◦ θ ◦ γ), 4× 16× 4 = 256 bits permutation

• γ: rotational symmetric, b0 = a1 + a2 + a0a2 + a1a2 + a1a2a3
• θ: Z is circulant, first row [0, 1, 1, 0, 0, 1, 0, 0, 0, . . . , 0]
• π: rotate rows down
• ρ: rotate rows cell-wise to the right by {14, 3, 10, 0}
• ι: add 0xF3485763� i in round i to every other cell of top row

13/17



Mixifer

• 16 rounds (ι ◦ ρ ◦ π ◦ θ ◦ γ), 4× 16× 4 = 256 bits permutation
• γ: rotational symmetric, b0 = a1 + a2 + a0a2 + a1a2 + a1a2a3

• θ: Z is circulant, first row [0, 1, 1, 0, 0, 1, 0, 0, 0, . . . , 0]
• π: rotate rows down
• ρ: rotate rows cell-wise to the right by {14, 3, 10, 0}
• ι: add 0xF3485763� i in round i to every other cell of top row
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Mixifer analysis

• Strict avalanche criterion after 3 rounds, full diffusion after 5

• After 4 rounds:

– In kernel: ≥ 52 active cells
– Outside kernel: ≥ 46 active cells (differential), DP 2−92
– Outside kernel: ≥ 40 active cells (linear), LP 2−80

• Preliminary study makes us believe trail clustering, impossible
differentials, invariant attacks are not a concern
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Mixifer implementation
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Mixifer comparison (ARM Cortex-M4)

Cipher Width r Speed (cpb) Bound trails

(bits) Full /r r W /r

AES bitsliced 128 10 50.52 5.05 4 150 37.5

AES tables 39.97 4.00

Gimli 384 24 21.81 0.91 8 52 6.5

Keccak-f [400] 400 20 106 5.3 6 92 15.3

Keccak-f [800] 800 22 48.02 2.18 6 92 15.3

Salsa20/20 512 20 13.88 0.69 3 18 6

Mixifer 256 16 36.69 2.33 4 92 23
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Thanks. . .

. . . for your attention

Questions?
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