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Butterfly Structure

A structure that serves infinite family of permutations over Fyu.

—
-« |
The open butterfly Hr The closed butterfly Vg

e Ry :x+ R(x,y) is a permutation over FFy: for all y in IFo»;
e Hp is an involution;

e Hg and Vg are CCZ-equivalent;
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Crypto 2016, Perrin et.al. reverse-engineered the only known APN
permutation over [Fys and discover this structure.

R(x,y) = (x+ay)* +y°

e & #0,1and odd n:
e Differential uniformity: at most 4;
o Algebraic degree: n+ 1 or n for Hg and 2 for V;
e Non-linearity: 22"~ — 272

The Gpi ity H e x =1and odd n: Hr < F° (3-round Feistel)
with
o Differential spectrum: {0,4};
e Non-linearity: 22"~ — 27;
T o Algebraic degree: n for Hg and 2 for Vg;

n > 3, more APN permutations from Hgr?

The closed butterfly Vz
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Previous generalizations

TIT 2017, Anne Canteaut et. al.: (x + ay)® +1y° = (x+ay)® + By°
with a, B # 0.

e B=(1+a)®and odd n:

Differential uniformity: 2"1;

Non-linearity: 22#~1 — 2(3n=1)/2,

Algebraic degree: n for Hg and 2 for Vg;

o n=3Tr(a) =0and B € {&®+a,a3+1/a}:
e Differential uniformity: 2;
o Non-linearity: 22"~ 1 — 27;
e Algebraic degree: n + 1 for Hg and 2 for Vg;

e Otherwise for odd n:
e Differential uniformity: 4;

o Non-linearity: 22"~ 1 —27;
e Algebraic degree: n + 1 or n for Hg with
The closed butterfly Vz 1+ 0(,3 4 “4 — (ﬁ Ry 0(3)2 and 2 for VR/'

The open butterfly H
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Previous generalizations

FSE 2018, Shihui Fu et. al.:(x 4+ ay)? + 1* = (x +ay)? ! + ! with
gad(i,n) =1

e & #0,1and odd n:

e Differential uniformity: at most 4;
o Algebraic degree: n + 1 or n for Hr and 2 for Vg;
o Non-linearity: 22"—1 — 2"

The open butterfly Hr

e x = 1and odd n: Hgr <& Ffand Vi isa
permutation.
e Differential uniformity: 4;

e Non-linearity: 22"~ — 27;
o Algebraic degree: n for Hg and 2 for Vg;

The closed butterfly Ve
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(T + ay)® 4y e > (24 ay)® T gy !

e How about the properties of more generalized butterflies?

(x+ay) +y° = (x +ay) + By
where ¢ = (2/ + 1) x 2! with ged(i,n) = 1.



(z+ Oéy)3 + y3 """"""""""""""""" > (z+ ozy)gi'*'1 + ;3y2i+1

e How about the properties of more generalized butterflies?

(x+ay) +y° = (x +ay) + By
where ¢ = (2/ + 1) x 2! with ged(i,n) = 1.

e The case of even n?
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Our generalization and main result

R(x,y) = (x +ay)’ + By’ wheree = (2 +1) x 2",
(0, B # 0 with B # (a+1)*"1)
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Our generalization and main result

R(x,y) = (x +ay)° + By’ where e = (2/ + 1) x 2.
(t, B # O with B # (a+1)2+)
e odd n, ged(i,n) = 1:

e Differential uniformity: at most 4;
e Non-linearity: 22"~ 1 — 27;
o Algebraic degree: n + 1 or n for Hg with

21 (azi71+a2i+1+‘3>2i i ( +a2 4 pa?- )i+ and 2 for
R-



Our generalization and main result

R(x,y) = (x +ay)’ + By’ wheree = (2 +1) x 2",
(x, B # 0 with B # (a+1)2+1)
e odd n, ged(i,n) = 1:
e Differential uniformity: at most 4;

e Non-linearity: 22"~ 1 — 27;
e Algebraic degree: n + 1 or n for Hg with

i i i 2'+1 i i\ 2+
g1 <a2 *1+¢x2+1+ﬁ> = (1_1_042“ + Ba? *1) and 2 for
R.

e gcd(i,n) = kand Tr <ﬁ2+(afkl)2“r1> =1 for Vg:

o Differential uniformity: at most 2%;

o Non-linearity: at least 22"~ — 2"*k1=1 k) = gcd(2i,n);
e Algebraic degree: 2.



Determine the number of solutions of a system of linear equations.

ax? +ax + by + by =1
a3x% + agx + bay® + by = o
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Determine the number of solutions of a system of linear equations.

ax? +ax + by + by =1
a3x% + agx + bay® + by = o

4

Investigate the kernel of

B le yzl
L(x,y)-A(x >+B<}/ )
withAz(al ”2),B:<b1 b2)
as da b3 b4



Relative results

Let A = M & ,B = by by be two nonzero matrices over Fon,
az  ay by by
and i be an integer with ged(i,n) = k. Let

en=a (5 )+ (})

be a linear mapping from F3, to F3,. Then, |ker(L(x,y))| < 2% <

3 ap ap; by by _
When rank(4) = 1, rank (11 72 12 )) =2

When rank(A) = 2, there does not exist A € IF,, such that

al)tzl: az/\ . ( bl bz )
azA? ) by by )°
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Relative results

Let A = ( a4 ),B = ( by by ) be two matrices over Fon, and i be

as da b3 b4
an integer with ged (i, n) = k. Let

wew=a(5) (7))

be a linear mapping from I3, to IF3,. If

(a1b3 + azby) # 0 or (azby + asby) # 0,

[ ker(L(x,))| < 2%

v

Remark: Lemma 1 can be used to reduce the proof of the non-linearity
of functions generated by 3-round Feistel network. (x = 1)



An application of Lemma 1

nis odd, gcd(i,n) = 1 and (a,c) # (0,0) € F5,,

3 tax+ Py oy =0
x4 ex+ (a+0)2y? + (a+c)y = 0.

has at most 4 solutions.
. gcd(2i n)=gecd(i,n) =1
e (a4 +" =0 ala+c)+A2=0
e 2> +ac+ c* = 0 cannot hold: For any ¢ € F3,,

Z4ez+c=04 (z/c)? +(z/c)+1=0

has no solutions since Tr(1) = 1.



Proof of differential uniformity

Prove the system of linear equations below has at most 4 solutions for
any (a,b) # (0,0) € F3,.

R2+1(xy)+R2+1(x—|—a,y+b) Rigl(ub)zo
R2+1(y,x)+R2+1(y+b,x+a) RS (b,a) =



Proof of differential uniformity

Prove the system of linear equations below has at most 4 solutions for
any (a,b) # (0,0) € F3,.

R2+1(xy)+R2+1(x—|—a,y+b) Rigl(ub)zo
R2+1( ,x)+R2+1( +b,x+a)+ R (ba
Y y
by=a"+p

(a+ ab)x i—i—(a—l—sz) x—i—(zx a+'yb)y —|—(zxa +’yb2)y:0
(ya+ a2b)x? + (ya® + ab®)x + (xa + b)y? + (aa+b)2y =0



Proof of differential uniformity

Prove the system of linear equations below has at most 4 solutions for
any (a,b) # (0,0) € Fa,.

{ Rzﬂ(x ) —|—R2+1(x—|—a,y+b) —|—R§igl(a b) =0

R “(y,x) - R2 H(y +b,x+a)+R* +1(b a) =
by=a"+p
(a+ ab)x? + (a—i—sz) X+ (zx a+'yb)y —|—(zxa +’yb2)y:0
(ya+ a2b)x? + (ya® + ab®)x + (xa + b)y? + (aa+b)2y =0
Applying the Lemma 1, we need to prove
(a+ab)(aa+b) = (ya+a?b)(aZa+b)
(a+ab)? (aa+b)? = (ya + ab®)(aa® + 4b?)

cannot hold simultaneously.

0



Proof of differential uniformity

(ve® +a)a® + (¥* +a® "+ a? + Dab + (ya? +a)b? =0
(ya+ )2 4 (P + 0 02+ )20+ (- 0P )P =0,



Proof of differential uniformity

(ya? +a)a® + (12 + o + o+ Dab+ (ya® +a)b> =0
(ya + azl)azl+1 + ('yz o a2y 1)a21b21 + (yo + [le)bZi+1 = 0.
b=0: 'yaczi +a= 'ync—szi = 0 can not hold ;

b # 0: sety = a/b, the corresponding equations have no common
solutions.



Proof of differential uniformity

(ve® +a)a® + (¥* +a® "+ a? + Dab + (ya? +a)b? =0
(v + 0V + (P +a T + 2+ Da® b + (o + o2 =0.

b=0: 'ychi +a= ')/Dc+0é2i = 0 can not hold ;
b # 0: sety = a/b, the corresponding equations have no common
solutions.

Let n be odd and i be an integer with ged(i,n) = 1, a, p € IF5,. Let
Y=o +8,D=9a% +a, E= (a+1)>*1 + B, F = a? + ya. Suppose
E # 0. Then the equations

Dx* +E*x+D =0 and 2" + E2x% +F=0

do not have common solutions in Fon.

v




Proof of Non-linearity

Prove that for (a,b), (c,d) € 3, with (a,b) # (0,0),

Av((c,d), (a,b))] < 2",



Proof of Non-linearity

Prove that for (a,b), (c,d) € 3, with (a,b) # (0,0),
[Av((c,d), (a,b))] < 2"

(1) Compute Ay((c,d), (a,b)):



Proof of Non-linearity

Prove that for (a,b), (c,d) € 3, with (a,b) # (0,0),
[Av((c,d), (a,b))] < 2",
(1) Compute Ay((c,d), (a,b)): Let y = a2t 4 B

M((cd), (@)= ¥ (1) < L(f).

x,y€Fn



Proof of Non-linearity

Prove that for (a,b), (c,d) € 3, with (a,b) # (0,0),
[Av((c,d), (a,b))] < 2",
(1) Compute Ay((c,d), (a,b)): Let y = a2t 4 B

M((cd), (@)= ¥ (1) < L(f).

x,y€Fn

Fxy) = Te(AP 1 4+ By + Cxy? + Dy )
with | |
A=a+by,B=aa+ba*,C=an® +bx,D=ay+b.
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Proof of Non-linearity

(2) Determine L(f):



Proof of Non-linearity

(2) Determine L(f):

Lemma [Anne Canteaut, Sebastien Duval, Leo Perrin. TIT 2017]

Let f be a quadratic Boolean function of n variables. Let LS(f) denote the
linear space of f, i.e.

LS(f) = {a € Fon : Dof(x) = ¢,Vx € Fan},

where € € {0,1}. Then, s = dim LS(f) has the same parity as n and
L(f) = 2"2". Moreover, the Walsh coeficients of f take 2"~ times the value

n+s

+272 and (2" — 2"7°) times the value 0.




Proof of Non-linearity

(3) Prove s = dim LS(f) = 2:



Proof of Non-linearity

(3) Prove s = dim LS(f) = 2:
D(u,v)f(xl y) =c
T
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Proof of Non-linearity

(3) Prove s = dim LS(f) = 2:
D(u,v)f(xl y) =c
T

Azfuzz_i + Au + szvzzf + Bv =0,
B2u? + Cu+ D?v? + Dv = 0.
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Proof of Non-linearity

(3) Prove s = dim LS(f) = 2:
D(u,v)f(xl y) =c
T

Azfuzz_i + Au + szvzzf + Bv =0,
B2u? + Cu+ D?v? + Dv = 0.

AZ A c? B .
o 5 and i are nonzero matrices.
B C D? D



Proof of Non-linearity

(3) Prove s = dim LS(f) = 2:
D(u,v)f(xl y) =c
T

Azfuzz_i + Au + 2 + Bv =0,
B2u? + Cu+ D?v? + Dv = 0.

AZ A c? B .
o 5 and i are nonzero matrices.
B C D? D

21 21 21
e Discuss the rank of 4 ; A and 4 ; A C ; B
B C B® C D¥ D

in cases according to Theorem 1.



Comparison

Compare the number of CCZ-equivalent classes of V from different
butterflies over a certain field.
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Comparison

Compare the number of CCZ-equivalent classes of V from different
butterflies over a certain field.

e Choose parameters:
e 1 =5 (the smallest for comparison)

ei=1,2 (V2 1 is EA-equivalent to V2 s )



Comparison

Compare the number of CCZ-equivalent classes of V from different
butterflies over a certain field.

e Choose parameters:
e 1 =5 (the smallest for comparison)

ei=1,2 (V2 1 is EA-equivalent to V2 s )

¢ Determine all the CCZ-equivalent classes of Viigl

e S={V2} Hw e Fl B (e + 1)L i=1,2);

e Chooseh € S, S, = {f € S : IsEquivalent(Cy, Cj,) eq true};
e Store S and let S := S\ Sy;

e Repeat until S = @.
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Experimental results

CCZ-inequivalence functions/permutations over IF%5 constructed with
butterfly structure:

R(x,y) Represent elements Number
=L Sl G INcEet s To R e 7
i=2, =1 gl B @ @ G s 6
1,50 (o, £=(1, 8%), (1, 8'%), (g%, &%), ]

(™2 )58k 88 )

| (@ H=(1, &), (1, %), (1, 2%,
=2, p#1 | . N 7
(g337 g)))7 (g,m’ glJZ)) (g-JJ7 g1)8)7 (g))j g165)




The case of ged (i, n) =k
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The case of ged (i, n) =k

Theorem 2

Let n, i be integers with ged(i,n) =k, a, p € ¥y, and p # (a + 1)2+L, Let
RY M (xy) = (x +ay)* ' + py* 1 and

Vi’lgl(x,y) = (Rﬁ’,z}rl (x,y),Ri’,gl(y, x)).

B o 0
If Tr (WW) = 1, then the following statements hold.
The differential uniformity of Viigl is at most 2%,

The nonlinearity of Vf’:gl is at least 221~ — 2"thi=1 qphere
ki = ged(2i,n).
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The case of ged (i, n) =k

Theorem 2

Let n, i be integers with ged(i,n) =k, a, p € ¥y, and p # (a + 1)2+L, Let
RY M (xy) = (x +ay)* ' + py* 1 and

Vi’lgl(x,y) = (Rﬁ’,z}rl (x,y),Ri’,gl(y, x)).

B o 0
If Tr (WW) = 1, then the following statements hold.
The differential uniformity of Viigl is at most 2%,

The nonlinearity of Vf’:gl is at least 221~ — 2"thi=1 qphere
ki = ged(2i,n).

Remark: we can get differentially 4-uniform functions V2i+1

2 p overIF3,
for any even n with ged(i,n) = 1.






e More APN permutations from the generalized butterflies?

(A sufficient condition for | ker(L(x,y))| < 2F?)
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e More APN permutations from the generalized butterflies?

(A sufficient condition for | ker(L(x,y))| < 2F?)
¢ Conditions that make Viigl a permutation?

Permutations that are CCZ-equivalent to ijgl ?



Thank you!
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