Cryptanalysis of the Legendre PRF and Generalizations

W. Beullens¹ T. Beyne¹ A. Udovenko² G. Vitto²

¹imec-COSIC, ESAT, KULeuven

²SnT, University of Luxembourg

November 13, 2020

Legendre symbol

▶ Legendre symbol of $a \in \mathbb{F}_p$ (prime p > 2):

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{ll} 1 & \text{if } a = b^2 \text{ for some } b \in \mathbb{F}_p^\times, \\ 0 & \text{if } a = 0, \\ -1 & \text{otherwise.} \end{array} \right.$$

Legendre symbol

▶ Legendre symbol of $a \in \mathbb{F}_p$ (prime p > 2):

$$\left(\frac{\textbf{\textit{a}}}{\textbf{\textit{p}}}\right) = \left\{ \begin{array}{ll} 1 & \text{if } \textbf{\textit{a}} = \textbf{\textit{b}}^2 \text{ for some } \textbf{\textit{b}} \in \mathbb{F}_{\textbf{\textit{p}}}^{\times}, \\ 0 & \text{if } \textbf{\textit{a}} = 0, \\ -1 & \text{otherwise}. \end{array} \right.$$

- ► Early 1900s: equidistribution results

 Jacobsthal (1906) and Davenport (1931)
- Damgård (1990) conjectures pseudorandomness of

$$\left(\frac{k}{p}\right), \left(\frac{k+1}{p}\right), \dots$$

Legendre PRF

▶ Pseudorandom function proposed by Grassi et al. (2016):

$$L_k(x) = \left(\frac{x+k}{p}\right) \in \{-1,0,1\}$$

- MPC-friendly
- Applications
 - Ethereum 2.0 proof-of-custody
 - LegRoast signatures Beullens et al. (2020)

Cryptanalysis of the Legendre PRF Overview

(Time complexities for $M<\sqrt[4]{p}$.)

Cryptanalysis of the Legendre PRF Overview

Cryptanalysis of the Legendre PRF Overview

(Time complexities for $M < \sqrt[4]{p}$.)

Cryptanalysis of the Legendre PRF Khovratovich (2019)

► Notation: $L_k(x + [m]) = (L_k(x), L_k(x + 1), \dots, L_k(x + m - 1))$

Cryptanalysis of the Legendre PRF Khovratovich (2019)

- ► Notation: $L_k(x + [m]) = (L_k(x), L_k(x + 1), ..., L_k(x + m 1))$
- ▶ Observation: $L_k(x + [m]) = L_0(k + x + [m])$

- 1. Query $L_k([M])$
- 2. Extract M-m sequences of the form $L_k(a+[m])$
- $oldsymbol{G}$ Sample $L_0(c+[m])$ until collision if $m=\Omega(\log p)$ then probably c=k+a

Cryptanalysis of the Legendre PRF Khovratovich (2019)

- ► Notation: $L_k(x + [m]) = (L_k(x), L_k(x + 1), ..., L_k(x + m 1))$
- ▶ Observation: $L_k(x + [m]) = L_0(k + x + [m])$

$$\vdots \qquad \vdots \\ a \qquad L_k(a+[m]) \\ \vdots \qquad \vdots$$

- 1. Query $L_k([M])$
- 2. Extract M m sequences of the form $L_k(a + [m])$
- $oldsymbol{G}$ Sample $L_0(c+[m])$ until collision if $m=\Omega(\log p)$ then probably c=k+a

Cost: $\widetilde{\mathcal{O}}(M+p/M)$ operations $\widetilde{\mathcal{O}}(M)$ memory

Our attack: idea

Multiplicativity of the Legendre symbol:

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \implies L_0(b) L_{k/b}(a/b + [m]) = L_k(a+b[m])$$

Our attack: idea

Multiplicativity of the Legendre symbol:

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \implies L_0(b) L_{k/b}(a/b+[m]) = L_k(a+b[m])$$

- 1. Query $L_k([M])$
- 2. Extract $\sim M^2/m$ sequences of the form $L_{k/b}(a/b+[m])$
- $oldsymbol{\circ}$ Sample $L_0(c+[m])$ until collision if $m=\Omega(\log p)$ then probably c=(k+a)/b

Our attack: idea

Multiplicativity of the Legendre symbol:

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \implies L_0(b) L_{k/b}(a/b+[m]) = L_k(a+b[m])$$

$$\vdots \qquad \vdots \\ a,b \qquad L_{k/b}(a/b+[m]) \\ \vdots \qquad \vdots \qquad \vdots$$

- 1. Query $L_k([M])$
- 2. Extract $\sim M^2/m$ sequences of the form $L_{k/b}(a/b+[m])$
- $oldsymbol{\circ}$ Sample $L_0(c+[m])$ until collision if $m=\Omega(\log p)$ then probably c=(k+a)/b

Cost: $\widetilde{\mathcal{O}}(M^2+p/M^2)$ operations $\mathcal{O}(M^2)$ memory

Our attack: optimizations

- Use consecutive samples in offline phase:
 - 1. Compute $L_0(c + [w])$ for some w > m
 - 2. Extract $\sim w^2/m$ sequences of the form $L_0(c/d+[m])$

- Our attack: optimizations
 - Use consecutive samples in offline phase:
 - 1. Compute $L_0(c + [w])$ for some w > m
 - 2. Extract $\sim w^2/m$ sequences of the form $L_0(c/d + [m])$
 - Caveat: sequences in the table are not random
 - Advantages:
 - Amortizes Legendre symbol computation
 → Cost dominated by sequence extraction and table lookups
 - Only store sequences with |a| < |b|
 - Cost: $\mathcal{O}(M^2 + p \log^2 p/M^2)$ time $\mathcal{O}(M^2/\log p)$ memory

Cryptanalysis of the Legendre PRF Our attack: implementation results

- ▶ First $M = 2^{20}$ consecutive PRF outputs $L_k([M])$ were given
- ▶ Bottleneck: table lookups $(0.08\mu s)$

р	Time (core-hours)	Memory / thread (GB)
$2^{40} - 87$	< 0.001	< 1
$2^{64} - 59$	1.5	3
$2^{74} - 35$	1500	3

- ► Dell C6420 server; two Intel Xeon Gold 6132 CPUs (2.6 GHz) 128 GB of RAM
- https://github.com/cryptolu/LegendrePRF

Generalizations of the Legendre PRF Overview

- ► Higher-degree Legendre PRF First analysis by Khovratovich (2019)
- ► Power-residue symbols

Generalizations of the Legendre PRF Higher-degree Legendre PRF

▶ Degree-1 Legendre PRF:

$$L_k(x) = \left(\frac{x+k}{p}\right), \quad k \in \mathbb{F}_p$$

Generalizations of the Legendre PRF Higher-degree Legendre PRF

Degree-d Legendre PRF:

$$L_k(x) = \left(\frac{x^d + k_{d-1}x^{d-1} + \dots + k_1x + k_0}{p}\right), \quad k \in \mathbb{F}_p^d$$

Generalizations of the Legendre PRF Higher-degree Legendre PRF

► Degree-*d* Legendre PRF:

$$L_k(x) = \left(\frac{x^d + k_{d-1}x^{d-1} + \dots + k_1x + k_0}{p}\right), \quad k \in \mathbb{F}_p^d$$

- Attacks $(d \ge 2)$:
 - Khovratovich (2019): $\widetilde{\mathcal{O}}(p^{d-1})$ time
 - This work: $\widetilde{\mathcal{O}}(p^2+p^{d-2})$ using sequence extraction
 - Kaluđerović et al. (2020): $\widetilde{\mathcal{O}}(p^3+p^{d-3})$
 - Weak keys (next slides)

Generalizations of the Legendre PRF

Higher-degree Legendre PRF

Example:

$$x^{d} + k_{d-1}x^{d-1} + \ldots + k_{1}x + k_{0} = \prod_{i=1}^{d} (x - \alpha_{i})$$

with $\alpha_1,\ldots,\alpha_{\it d}\in\mathbb{F}_{\it p}$ distinct

Generalizations of the Legendre PRF

Higher-degree Legendre PRF

Example:

$$x^{d} + k_{d-1}x^{d-1} + \ldots + k_{1}x + k_{0} = \prod_{i=1}^{d} (x - \alpha_{i})$$

with $\alpha_1, \dots, \alpha_d \in \mathbb{F}_p$ distinct

 $\mathbf{x} \widetilde{\mathcal{O}}(n^{\lceil d/2 \rceil})$ att

Generalizations of the Legendre PRF

Higher-degree Legendre PRF

- ▶ Weak key when $x^d + k_{d-1}x^{d-1} + ... + k_1x + k_0$ is reducible
- Worst case: two factors of equal degree

$$L_k(x) = L_{k_1}(x)L_{k_2}(x)$$
 with $k_1, k_2 \in \mathbb{F}_p^{d/2}$

▶ Attack: find collision between $L_k([m])L_{k_1}([m])$ and $L_{k_2}([m])$

Generalizations of the Legendre PRF Jacobi PRF

▶ Let p, q > 2 be primes. Jacobi symbol of $a \in \mathbb{Z}/(pq)\mathbb{Z}$:

$$\left(\frac{a}{pq}\right) = \left(\frac{a}{p}\right) \left(\frac{a}{q}\right)$$

Generalizations of the Legendre PRF Jacobi PRF

▶ Let p, q > 2 be primes. Jacobi symbol of $a \in \mathbb{Z}/(pq)\mathbb{Z}$:

$$\left(\frac{a}{pq}\right) = \left(\frac{a}{p}\right) \left(\frac{a}{q}\right)$$

Observation

$$\left(\frac{k+px}{pq}\right) = \left(\frac{k}{p}\right)\left(\frac{k+px}{q}\right) = \left(\frac{k}{p}\right)\left(\frac{p}{q}\right)\left(\frac{k/p+x}{q}\right)$$

- Attack:
 - 1. Use attack on Legendre PRF to obtain $k \mod q$
 - 2. Use attack on Legendre PRF to obtain $k \mod p$
 - 3. Apply the Chinese Remainder Theorem

Generalizations of the Legendre PRF Power-residue PRF

- ▶ Let p be a prime such that $r \mid (p-1)$
- ► The *r*-th power residue symbol of *x* is

$$\left(\frac{x}{p}\right)_r = x^{(p-1)/r}$$

- Applications
 - Extract more output-bits
 - PorcRoast signatures Beullens et al. (2020)

Generalizations of the Legendre PRF Power-residue PRF

- ▶ Let p be a prime such that $r \mid (p-1)$
- ▶ The *r*-th power residue symbol of *x* is

$$\left(\frac{x}{p}\right)_r = x^{(p-1)/r}$$

- Applications
 - Extract more output-bits
 - PorcRoast signatures Beullens et al. (2020)
- lackbox Basic attack generalizes: $\widetilde{\mathcal{O}}(M^2+p/M^2)$ time $\widetilde{\mathcal{O}}(M^2)$ memory
- ▶ For large r: $\widetilde{\mathcal{O}}(M+p/(Mr))$ time $\widetilde{\mathcal{O}}(M)$ memory (see paper)

Conclusions

- Improved attack on the Legendre PRF
 - Relevant in the low-data setting: $\widetilde{\mathcal{O}}(p/M^2)$ for $M < \sqrt[4]{p}$
 - Solution to concrete challenges (64 and 74 bit)
- Improved attacks on the higher-degree variant
- First evaluation of two other variants from Damgård (1990)
 - Jacobi symbols
 - Power-residue symbols
- https://github.com/cryptolu/LegendrePRF

References I

- Jacobsthal, Ernst Erich (1906). "Anwendungen einer Formel aus der Theorie der quadratischen Reste". PhD thesis.
 Friedrich-Wilhelms Universität zu Berlin. Chap. 3.
- Davenport, Harold (1931). "On the distribution of quadratic residues (mod p)". In: Journal of the London Mathematical Society 1.1, pp. 49–54.
 - Damgård, Ivan (Aug. 1990). "On the Randomness of Legendre and Jacobi Sequences". In: *CRYPTO'88*. Ed. by Shafi Goldwasser. Vol. 403. LNCS. Springer, Heidelberg, pp. 163–172. DOI: 10.1007/0-387-34799-2_13.
- Grassi, Lorenzo et al. (Oct. 2016). "MPC-Friendly Symmetric Key Primitives". In: *ACM CCS 2016*. Ed. by Edgar R. Weippl et al. ACM Press, pp. 430–443. DOI: 10.1145/2976749.2978332.
- Beullens, Ward et al. (2020). LegRoast: Efficient post-quantum signatures from the Legendre PRF. Cryptology ePrint Archive, Report 2020/128. https://eprint.iacr.org/2020/128.

References II

Khovratovich, Dmitry (2019). Key recovery attacks on the Legendre PRFs within the birthday bound. Cryptology ePrint Archive, Report 2019/862.

https://eprint.iacr.org/2019/862.

Kaluđerović, Novak et al. (2020). *Improved key recovery on the Legendre PRF*. Cryptology ePrint Archive, Report 2020/098. https://eprint.iacr.org/2020/098.